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This paper describes thoroughly the need and the method of deriving, the first of its kind, the NMR/MRI blood flow 
magnetization (y-component) equation in the rotating frame when rf B1 field is applied along the laboratory X direction. The 
equation describing the My component of magnetization in the rotating frame of reference (at resonance condition) in 
presence of flow of spins and relaxation times is given by: 
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vx and vy are the components of blood flow velocity along the x and y directions of the rotating frame in an NMR 
experiment. The equation is expected to serve as the mother equation for accurate non invasive blood flow quantification 
through all NMR/MRI experiments. The method can be used to derive similar equations for the x and z component of 
magnetizations in the rotating frame of reference. It is shown how Awojyogbe’s equation of blood flow magnetization can 
be obtained from above equation under the assumption of constant rf B1 field and vy = 0. The method of deriving the 
equation can be applied to obtain single component magnetization equation applicable for diffusion MRI/NMR experiments 
MRI of spins in presence of relaxation times and flow (if necessary). The method can also be extended to derive the 
NMR/MRI spin flow magnetization equation in presence of relaxation times and spin diffusion (if necessary), magnetic field 
gradients etc. in the laboratory frame of reference. The derivation of the corresponding flow equation for longitudinal 
component of magnetization will be discussed in a separate paper.  
 
 
 

1.     Introduction 

Magnetic Resonance Imaging has stirred a great 
deal of interest in the medical community. As the 
image qualities are improving and as the amount of 
information that they can offer has been 
appreciated, the modality has become the primary 
topic of discussion among imaging scientists, 
imaging physicians, hospital administrators and 
government officials responsible for funding health 
care in many countries around the world. The 
combining applications of NMR and MRI in 
medical studies in human – a vast complex and 
very promising prospect – have not been 
adequately explored and are being investigated by 
scientists, engineers, mathematicians and clinicians 
around the world.    At the heart of all these efforts 
___________ 
*dlpd770@gmail.com 

lie the Bloch NMR equations for the three 
components of Magnetizations, Mx, My and Mz of 
the nuclear spin. NMR/MRI offers non-invasive 
measurements of blood flow in humans. This is 
very important in many types of clinical diagnosis. 
Magnetizations of flowing spins under given rf 
excitations are dependent on flow velocity of spins 
apart from rf B1 field, magnetizing field, Bo and 
field gradients and rf frequency etc. This forms the 
basis of measuring blood flow rate (both velocity 
and volume flow rate) by NMR/MRI techniques.  

Various techniques have been developed over 
the past two decades in quantifying blood flow 
velocity and rates. Some of these are discussed 
below. Magnetic resonance (MR) signals are 
usually generated in three ways [1-5]: Spin Echo 
(SE), Free Induction Decay (FID) and Gradient 
Echo Technique. The MRI sequences depend on 
the integration of these types of signals with 
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gradient sequences necessary for spatial encoding. 
Flowing spins, along an applied magnetic field 
gradient, can acquire phase shift in the MR signal 
compared to the static tissue signal. The phase shift 
is proportional to the strength, duration of the 
gradient and motion of spins. Phase contrast as a 
result of the phase shift enables us to achieve 
complete suppression of the static tissue and thus 
estimation of information on flowing spins (usually 
of blood). The final signal in a given time frame 
should however depend not only on the phase shift 
but also on the flow dependent magnetizations. De 
[6] and Odoh and De [7] reported theoretical 
investigation and computation of time dependent 
CW NMR Blood flow signal for estimation of 
blood flow parameters using a new approach for 
continuous wave nuclear magnetic resonance (CW 
NMR). It has been shown that CW NMR can be a 
very useful technique that can be used for 
quantification of blood flow rate if the 
mathematical complexities involved can be handled 
successfully. However, in the analysis it was 
assumed that B1 field is such that Mz component 
does not vary appreciably from Mo, the saturation 
magnetization at a given bias magnetic field. This 
is true only for low values of B1 field. 

The feasibility of measuring blood flow to the 
human retina using arterial spin labeling MRI, a 
quantitative, noninvasive tomographic technique 
was investigated by Maleki et al. [8]. 
Quantification of cerebral blood flow (CBF) is very 
essential to diagnose many of the neurological 
pathologies that affect neonates and small infants 
as well as adults. CBF measurements are often 
performed through applications of radioactive 
tracers or other invasive methods which in turn can 
affect the human system. Varela et al. [9] 
developed technique using phase contrast MRI that 
can easily be appended to a neonatal MRI 
examination to provide rapid, robust, and non-
invasive estimates of mean CBF, thus providing a 
means to monitor developmental or pathology-
related alterations in cerebral perfusion and the 
impact of different treatment courses. Even though 
key hemodynamic factors for flow quantification, 
including arterial transit delay and the apparent 
decay time of the signal, were estimated by 
repeated measurements with different arterial spin 
labeling timing, it is expected that flow 
quantification by NMR/MRI in any part (through 
proper slice selection technique) of the entire 
human body would improve greatly if the Bloch 
NMR/MRI flow magnetization equations are 
properly framed. Awojoyogbe and his group’s 

works (2000-2012) [10-20] in this direction are 
noteworthy, some of which are discussed below: 

Awojoyogbe [10-12] derived the following flow 
magnetization equation  
 
V2M׳׳ + V(T1

-1 + T2
-1)M׳ + (γ2B1

2(x.t)  + T1
-1T2

-1)M  
 

= γMoB1(x.t) T1
-1                         (A) 

 
Where, V is the flow speed of the nuclear spin 
along the rotating x direction along which the rf B1 
field is applied, T1 and T2 are the relaxation times 
and B1(x,t) is the rf B1 field.  γ is the gyromagnetic 
ratio of the nuclear spin. M׳ and M׳׳ are the first 
and second order derivatives (with respect to x) of 
the y component of magnetization. Mo is the 
saturation magnetization.  Dada et al. [21] 
suggested application of the Boubaker-Turki 
polynomials to Magnetic Resonance (MR) blood 
flow imaging. Their suggestion was based on the 
comparison of the following second order 
differential equation (B): 
 

4x(1 – x2)y׳׳ + P(x,n)y׳ + Q(x,n) = 2Q(x,n)Tn(x) 
 

(B) 
Where, 

P(x,n) = -4x2 + 2nx – 2n + 8 
 

Q(x,n) = -4x2n + 6n – n2 -32 
 
with the flow magnetization Eqn. (A).  

Even though the correctness of Eqn. (B) is not 
checked in the present work, obviously Eqn. (A) 
does not fit in to the form of Eqn. (B), the reason 
being that V, the velocity of flowing spins (which 
is the object of investigation by NMR/MRI), cannot 
be forced to assume any chosen functions of x, so 
as to conform to Eqn. (B). Thus application of 
Boubaker polynomial for solution of Eqn. (1) is 
thus highly questionable.  Moreover, as shown later 
Eqn. (1) for NMR/MRI flow magnetization is true 
only in rotating frame of reference and has limited 
validity. It is valid when V is independent of x and 
t, or in other words for steady blood flow through 
uniform vessel cross section and V is the flow 
speed of the spin along the rotating x direction 
along which the rf B1 field is applied. For the 
equation to be valid, other conditions that must 
hold are: rf B1 field must be independent of x and t, 
which is hard to achieve in any MRI/NMR 
sequence. A number of article were published by 
Awojoyogbe [10-13] and Awojoyogbe and his 
group [15-20] discussed mathematical concept of 
the Bloch flow equations for general magnetic 
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resonance imaging and exploring new dimensions 
cardiovascular flow and motion, application of 
Bloch NMR flow equations, Bessel and spherical 
harmonic functions based on the following ideas. 
Since molecular motion of water is significantly 
affected by macromolecules, the variation in the 
relaxation times between tissues is attributed to the 
effect of macromolecular interaction. The 
movement of water molecules during diffusion-
driven random displacement is restricted by 
compartmental boundaries and other molecular 
obstacles in such a way that the actual diffusion 
distance is reduced as compared to what is 
expected in unrestricted diffusion. NMR/MRI 
sequences of diffusion driven spins should yield 
information on restricted compartmental 
boundaries through which diffusion of blood occurs 
in case of sicknesses such as sickle cell anemia. 
This is based on the idea that NMR/MRI signals in 
such cases would significantly differ (specially 
because of different relaxation times) from that of 
blood spin diffusion through unrestricted 
boundaries (as in healthy patients). 

Jain et al. [22] discussed MRI estimation of 
global brain oxygen consumption rate. Their 
method of flow estimation like many other 
techniques are based on change of phase angle of 
magnetisation of flowing spins with magnetic field 
gradient pulse and flow velocity using the equation   
∆φ = γv∆M1, where M1 = γv [∫G(t)tdt]. ∆M1 is the 
difference in the first moment M1 between two 
interleaves under magnetic field gradient. This 
equation is an over simplification in the sense that 
flowing blood magnetisation is itself velocity 
dependent and the equation does not take care of 
that and the equation could only yield good result 
when the spatial separation between the two 
interleaves as well as the flow velocity are quite 
small. Because the NMR/MRI magnetization is 
flow dependent, assumption of linear dependence 
of phase difference is ideally questionable. 

Scientifically actual quantification of 
information on diseased vessels depends on correct 
Bloch NMR/MRI magnetization equation including 
flow, diffusion and relaxation effects of the spins. 
If this is not cast accurately from strict physical 
point of view it is prone to yield inaccurate 
information when quantification is made through 
application of such equations on the measured 

NMR/MRI signals or images. Moreover, extraction 
of flow information from NMR/MRI 
signals/images without the application of correct 
flow magnetization equation is bound to be 
associated with errors. Therefore, we have 
undertaken examination of the correct form of 
Bloch NMR flow magnetizations  equation (the 
mother equation) from which NMR/MRI signals 
can be computed under various schemes of 
Imaging sequences for both steady and pulsatile 
blood (nuclear spin) flow. In this examination, we 
limit ourselves to the rotating frame of reference. 
We also limit ourselves to the formulation of flow 
magnetizations equation without applied field 
gradient. We believe that the case of applied field 
gradients can be easily included following our 
scheme of formulations. The corresponding 
equations in each Laboratory reference frames will 
be discussed in a subsequent paper Part II. We 
discuss the application of our equations to diffusion 
MRI. 

In the following formulations and discussions, 
we assume that the bias magnetic field (Bo) is 
applied along laboratory Zo axis (of the laboratory 
XoYoZo frame of axes) which coincides with the z 
axis of the rotating xyz axes) as shown in Fig. 1. 
The rf B1 field in the form B10coswt is applied 
along the laboratory Xo axis by an excitor coil as 
shown in Fig. 2a. A time independent magnetic 
field of magnitude B10/2 can be considered to be 
along the rotating x axis making an angle wt with 
the laboratory Xo axis counter clockwise. The 
detector coil has plane perpendicular to the Yo axis 
of the laboratory frame (Fig. 2b). Therefore, we 
have undertaken examination of the correct form of 
Bloch NMR flow magnetizations equation (the 
mother equation) from which NMR/MRI signals 
can be computed under various schemes of imaging 
sequences for both steady and pulsatile 
blood(nuclear spin) flow. In this examination, we 
limit ourselves to the rotating frame of references. 
We also limit ourselves to the formulation of flow 
magnetizations equation without applied field 
gradient. We believe that the case of applied field 
gradients can be easily included following our 
scheme of formulations. The corresponding 
equations in Laboratory reference frames will be 
discussed in a subsequent paper Part II. We discuss 
the application of our equations to diffusion MRI. 
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Fig.1: Rotational frame of axes (xyz) in relation to the fixed Laboratory frame of axes (X0Y0Z0). x  axis of the rotational 
frame makes an angle ω0t  with the X0 axis of the laboratory frame at time t. ω0 = γBo = 2πfo . fo is the NMR resonance 
frequency. The oscillating rf B1 field is applied along the X0 axis along which the blood flow is considered to take place. 
Along the x axis of the rotating frame the rf B10 field is independent of time. The magnetization component My which is 
function of B10 , T1, T2, flow velocity etc. produces the signal in the detector coil placed in quadrature mode to the excitor 
coil (see Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: The relative disposition of the excitor coil (AB) and the detector coil (CD) in quadrature mode to be employed in the 
blood flow estimation by NMR. 
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2.     Preliminary Basics of the Bloch NMR 
Equations 

In NMR the nuclear spins are magnetized by an 
external magnetic field Bo (along laboratory Z 
directions). Radio frequency (rf) excitation B1 field 
are applied along laboratory X directions. Rf B1 
field of frequency ω is given by  
 

B1(t) = B1osin(ωt)                      (1) 
 
The net field is given by  
 

B = koBo + ioB1(t)                       (2) 
 

as seen from the laboratory XYZ axes. Here, io and 
ko are the unit vectors along X and Z axes. Please 
note that small letters x and y are used for rotating 
frame coordinates. The rotation of the nuclear spins 
under the net field can be described by the fact that 

the net rate of change of angular momentum 








dt

dL
 

is equal to the torque (τ = M x B) due to the net 
magnetic field.  
 

Thus 

dt

dL
 = M x B                              (3) 

 
In some MRI sequences a pulsed magnetic field 
gradient may be applied along Z direction for 
selecting particular slices for investigation. We are 
omitting that from our present discussion. Now 
 

M = γL                                 (4) 
 
Using Eqn. (4), Eqn. (3) becomes 
 

dt

dM
 = γM x B                           (5) 

 
Eqn. (5) is correct only for a single nuclear spin in 
the absence of any interaction with neighbouring 
spins. But, when the spin is surrounded by the 
environment (such as water, tissues, fluids samples, 
and solids), the Z, X and Y components of the spin 
magnetization M relax due to the interaction with 
the environment. Mz relaxes with time T1 (called 
spin-lattice relaxation times) according to  
 

Mz = Mzo(1 - exp(-t/T1))                    (6) 
 
Where, Mzo is the magnetization acquired by the 
sample as given by  

Mzo = MoBJ(α)                             (7) 
 

Mo = NAµB(j(j+1))0.5                      (8a) 
 
µB = Bohr magneton and NA = Avogradro number 
and where BJ(α)  is the Brillouin function given by  
 

BJ(α) = 


 +
j

j

2

12
coth

j

j

2

12 +
α - 

j2

1
coth 



α
j2

1
 

(8b) 
 

α = BoµB(j(j + 1))0.5/kBT                      (8c)  
 
and j is the total nuclear spin. Mx and My 
components relax with time T2. With relaxation 
effects the Eqn. (5) then takes the form 
 

dt

dM z  = γ(M x B)z         +     
1T

MM zo −
   (9a) 

 

dt

dM x  = γ(M x B)x          −
2T

M x              (10a) 

 

dt

dM y
 = γ(M x B)y         −  

2T

M y
             (11a) 

 
Because of relations (Eqn. (1)) and (Eq. (2)) the 
solutions of (9a)-(11a) are difficult. A rotating 
frame of reference x,y,z is invoked where z axes of 
the rotating frame coincides with laboratory Z axis 
and the x-y axes rotate (with angular velocity ω)  in 
the laboratory X-Y plane anticlockwise such that 
the rotating x axis makes an angle ωt at any time t 
with the X axis. Then the rf B1 field is along the 
rotating x axis in the rotating frame. Then Eqns. 
(9)-(11) become at NMR resonance conditions (i.e., 
at ω = ωo =  γBo).  
 

dt

dM z  = γ(M x B1o)z         +     
1T

MM zo −
   (9b) 

 

dt

dM x  = γ(M x B1o)x         −
2T

M x                (10b) 

 

dt

dM y
 = γ(M x B1o)y   −  

2T

M y
                     (11b) 

 
M = iMx + jMy + kMz                               (12) 
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Where, i,j and k are now unit vectors in the rotating 
frame of references as the components also are. In 
Eqns. (9b)-(11b) the rf B1 field is independent of 
time in a CW NMR experiment and is dependent 
on time in a pulsed NMR experiment. Eqns. (9b)-
(11b) then finally become (ωo = γBo).  
 

dt

dM z  = −γMyB1o + 
1T

MM zo −
            (13) 

 

dt

dM x  = −
2T

M x                                       (14) 

 

dt

dM y
 = γMzB1o −  

2T

M y
                         (15) 

 
B1o is the amplitude of rf B1 field. It is to be noted 
that the My component produces the signals which 
are detected by coil placed usually at right angles to 
the rf B1 field coil.  

3.     Formulations of NMR Flow Magnetization 
Equation 

In this section, we derive the expression for the 
component of flow magnetization that will produce 
the final signal in the detector coil (with its axis 
along the laboratory X axis). Eqns. (13)-(15) are 
true in the rotating frames of references when there 
is no translational motion of the spins. Let us now 
consider the effect of translational motion (flow) of 
the nuclear spins on the above equations. With flow 
M will become function of x,y,z and t, i.e.,  
 

M = M(x,y,z,t)                           (16) 
 
Then the total time derivative of M is given by: 
 

dt

dz

z

M

dt

dy

y

M

dt

dx

x

M

t

M

dt

dM

∂
∂+

∂
∂+

∂
∂+

∂
∂=     (17) 

 

Where, 
dt

dx
,

dt

dy
,

dt

dz
 , are the components of the 

fluid velocity V. 
We can also write this equation in the form: 

 

zyx V
z

M
V

y

M
V

x
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M
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and 
 

MV
t

M

dt

dM ∇⋅+
∂

∂=                    (19) 

 

∇  = 
z

k
y

j
x

i
∂
∂+

∂
∂+

∂
∂  is the gradient vector. The 

total derivative 
dt

dM
 is also a function of x, y, z, 

and t. A similar relation holds between partial and 
total derivative of any quantity, and we may write, 
symbolically, 
 

∇⋅+
∂
∂= V
tdt

d
 

 
Where, V is the fluid velocity. 

Let us assume that the fluid is moving only 
along x direction. Then Vy = Vz = 0 and Vx = Vx. 
Then Eqn. (19) reduces to 
 

xMV
t

M

dt

dM
)(∇+

∂
∂= = 

x

M
V

t

M

∂
∂+

∂
∂

     (20) 

 
Now M is a vector quantity and is given by M = 
iMx + jMy + kMz . 

Then from Eqn. (20) the Bloch flow NMR 
equations for flowing spins then [6,7] as follows. 
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∂
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Omitting the total derivative on the left of Eqns. 
(21)-(23) 
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The My component in the above equations produces 
the signal in the detector coil when its cross section 
is placed normal to either the X or Y direction (note 
that the y axis makes ωt angle with the Y axis. 
Therefore, the task is how to solve for My from 
Eqns. (22) and (23) above. In this paper, a new 
operator formalism is adopted to arrive at a 
differential equation involving My only from the 
above equations. The above equations are true at 
NMR/MRI resonance conditions (i.e., the 
frequency, ω of the rf B1 field is equal toγ Bo) in 

the rotating frame of reference (x,y,z) in which 
rotating frame x axis coincides with the rotating 

)(1 xB axis; z axis coincides with the applied Bo 

direction (LABORATORY Z axis) y axis is along z 
x x direction. B1 field in a CW experiment is time 
independent in a CW NMR experiment. However, 
in pulsed NMR experiment B1 field is time 
dependent even in a rotating frame. Hence forth 
B1(x) will be replaced by B1(x,t) in the following 
equations so as to represent a general case. 

4.     Operator Formalism Method for Obtaining 
Bloch NMR Equations of Flow Magnetization, 

My  in the Rotating Frame of Reference 

From the above equations, a partial differential 
equation of second order is derived following an 
operator formalism method which is very valuable 
in the analyses of space and time dependence of the 
NMR magnetization components of flowing spins. 
In Eqn. (21′) Mx can be solved by assuming Mx = 
f(x)g(t) and using separation of variable when V is 
steady velocity or time dependent but independent 
of X. Below we use the symbol v for the velocity V 
in above equations. To solve for My we see that 
From Eqn. (23′), we have  
 

or 
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In Eqn. (24) 
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 is the inverse 

operator of 
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1
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v . Substituting zM  

from Eqn. (24) in Eqn. (22′), it follows that
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Or, 
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Eqn. (26) contains only My. In Eqn. (26) it is not 

easy to evaluate the effect of 









+
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∂
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1
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  on 

the function ( ) 
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1
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T

M
txBM o
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We use the following method to eliminate the 
effect of the inverse operator and obtain a 
differential equation in My.

 

Let Ω1 and Ω2 represent the differential 
operators  
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note that Ω-1 acts only on ( ) 







+−

1
1 ,

T

M
txBM o

yγ  

and not on B1(x,t) outside the curly bracket in Eqns. 
(25) and (26). Eqn. (26) is then written in terms of 
the operators as 
 

( ) ( )txB
T

M
xBMM o

yy ,1
1

1
1

12




















+−Ω=Ω − γγ   (27)

 
 
We note that the main problem in solving the Bloch 
NMR differential equations is handling the inverse 
operators of Ω1 and Ω2. We operate both sides of 
Eqn. (27) by Ω1. Then we get  
 

( ) ( )
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T
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txBM
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1
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γγ
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In the right-hand side of Eqn. (28) we note that Ω1 
acts also on B1(x,t) outside the curly bracket. Let  
 

( )
1

1 ,
T

M
txBM o

y +− γ  = f(x) and ( ))(1
1 xf−Ω  = g(x) 

                        (29) 
 
Then Eqn. (28) becomes  
 

( ) ( )],})([{][ 1
1

1121 txBxfM y
−ΩΩ=ΩΩ γ        (30) 

 
Or,  
 

( )],)}([{][ 1121 txBxgM y Ω=ΩΩ γ            (30) 

 
We now expand the right-hand side of Eqn. (30) 

first. We get after expanding 
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Now we substitute the expression for g(x) in Eqn. 
(31). We get  
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In Eqn. (33) we have utilised the fact that   1
11
−ΩΩ  

= 1. 
Eqn. (27) is written in terms of f(x) as 
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Eliminating { )}(1
1 xf−Ω  from the Eqns. (33) and 

(27) we get 
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Substituting f(x) from Eqn. (29) into Eqn. (34) we 
get 
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Substituting the expressions for 21,ΩΩ into Eqn. 

(35) we get (noting that the terms in the curly 
brackets of the second term of Eqn. (35) are 
multiplicative (and hence commutative). 
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The differential Eqn. (36) can be written in a 
compact form as  
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The operators appearing in Eqns. (36) and (37) are 
all commutative in the realm of NMR/MRI 

sequences, i.e., 
tx

v
∂
∂

∂
∂

 = 
t∂

∂
x

v
∂
∂

, specially when 

v corresponds to steady flow situation and 
independent of time. The solution of Eqn. (37) 
when v  is time dependent or pulsatile flow as in 
humans is out of the scope of this paper. 
Determination of T2, T1 relaxation times and MRI 
images are based on pulsed sequences when B1(x,t) 
is time dependent and usually given by a Fourier 
series in ωt. We believe that the above Eqns. (36) 
and (37) should hold in such case also and the Eqn. 
(37) represents the true diffrential equation for My, 
which produces the detectable NMR signal under 
any NMR/MRI sequence.  

5.     Discussion 

In absence of flow (v = 0), the equation of Bloch 
NMR magnetization My is then given from Eqn. 
(37) as: 
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(38) 
 
Eqn. (38) can describe magnetization component 
My of stationary spin in the rotating frame for all 
NMR/MRI pulse sequences in which B1(x,t) can be 
in the form of pulsed rf. For CW NMR (without 
flow) the explicit time derivative part can be 
dropped from Eqn. (38).  

In such situation B1(x,t) = B10 and we see  from 
Eqn. (38) that 
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Where, B1o is the magnitude of rf B1 field along the 
x axis of the rotating frame of reference. This 
makes an angle ωt with the laboratory Xo axis. We 
note that the solution of Eqn. (21) for Mx in the  
absence of flow gives, Mx = Mxoexp(-t/T2).  Mx 
becomes neglible when t>> T2 in CW NMR case 
with no flow of spins. Then one can easily obtain 
the expressions for MXo and MYo in the Laboratory 
frame as follows:  
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Fortunately Eqns. (40) and (41) are the exact 
solutions of Bloch CW NMR magnetizations at 
resonance condition in the laboratory frames  with 
no flow of spins (i.e., for stationary nuclear spins). 
This shows the correctness of our approach in 
formulating a coherent differntial Eqn. (37) that can 
describe the My component of magnetization of 
flowing spins in the rotating frame under any form 
of rf B1 field excitation. We believe that the Eqn. 
(37) can be applicable to all cases of NMR/MRI 
excitations of flowing spins whether pulsed rf or 
CW NMR. We believe that such formulations 
(Eqns. (36) or (37)) is not seen in literature before.  

If an ideal imaginary situation can be assumed 
when ( )txB ,1  is both independent of time and x 

then the above equation (37 ) reduces to  
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Assuming flowing spin velocity v  to be both 
independent of time and x, and assuming  
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one gets from Eqn. (42) 
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Eqn. (43) describing flow magnetization yM  in the 

rotating frame is obtained from Eqns. (36)-(37) 
when B1 field is independent of both t and x. At 
any given time t, we could get information from it 
about the system, provided that appropriate 
boundary conditions are applied. If in a NMR 

experiment the time dependence 
t

M y

∂
∂

of yM  can 

be dropped in Eqn. (39) and one gets the flow 
magnetization equation:  
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as derived by Awojyogbe [10-12] earlier as the 
original flow magnetization equation [22]. They 
had assumed B1 to be function of both x and t. We 
see from our above derivations that in Eqn. (44) the 
B1 field must be independent of both x and t. Eqn. 
(44) has recently been discussed theoretically in 
several publications. We have shown above that 
Eqn. (44) can be derived from the mother Eqns. 
(36)-(37) of NMR flow magnetization based on 
conditions described above. Experimental 
situations conforming to such conditions of Eqn. 
(44) could be a situation in which the B1 field, a 
CW NMR, is nearly uniform over the area of flow 
interest. 

Thus we see that our Eqn. (36) or Eqn. (37) 
becomes the mother equation for NMR/MRI flow 
magnetization from which all equations of flow 
magnetization (in the rotating frame at resonance, 
i.e., when ω = ωo) can be obtained depending on 
experimental situations i.e., rf pulse sequences, 
slice selection gradient pulses etc. In a given 
NMR/MRI experiment a particular slice is selected 
through the application of magnetic field gradient 
and rf pulse is applied and signal is recorded. Based 
on form of the rf pulse B1(x,t) field the flow 
magnetization and hence the blood flow signal 
across the slice or along a selected vessel can be 
computed from Eqns. (37), (38). This would enable 
us to obtain non-invasive flow information 
(appropriate for the medical diagnosis) accurately 
using the signal data. The approach given above 
could be extended to obtaining correct NMR/MRI 
spin flow magnetization equations in the 
Laboratory frame of reference. Such equations will 
be reported in our next work.  

5.1.     For blood flow velocity along laboratory 
X direction 

In the above formulations (Eqns. (36) and (37)) it 
was assumed that the flow velocity is along x 
direction, the direction of the rotating rf field. In a 
realistic MRI sequence of blood flow estimation 
the artery (through which flow is occuring) could 
be selected through the slice encoding pulsed 
gradient fields and the rf B1 field could be aligned 
along or perpendicular to the flow direction 
(through the selected vessel). Let us assume that in 
such situation the flow velocity Vo as well as the rf 
B1 field is along the laboratory X direction. The 
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components of the flow velocity along the rotationg 
x and y directions are 
 

vx = Vocosωt and vy = Vosinωt            (44a)  
 
Then it can be shown easily by following the above 
methods the Bloch NMR/MRI flow magnetization 
equation (in the rotating frame) takes the form with 
magnetizing field Bo being along Z direction 
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Where 

∇•v  =  
x

vx ∂
∂

 + 
y

v y ∂
∂

 

 
Eqn. (45) describes the flow magnetization in the 
rotating frame of reference with vx and vy obtained 
through the velocity Vo in the Laboratory frame 
(see Eqn. (44a)). One can easily see from Eqn. (45) 
that for no flow conditions one obtains Eqn. (39) 
and consequently Eqns. (40) and (41) for CW 
NMR on static tissue or samples. Also Eqns. (36) 
and (37) emerge from (45) when vy is dropped (i.e., 
only vx is retained) as a special case. Solutions of 
Bloch NMR/MRI flow magnetizations in the 
rotating frame as given by Eqns. (36), (37) and (45) 
are beyond the scope of the present article and 
would be discussed subsequently. It is to be noted 
that the solutions depend on specific MRI 
sequences used in the blood flow estimation. The 
solutions of Eqns. (36), (37) and (45) may be 
attempted in line with the solutions proferred by 
Odoh and De [23] 

5.2.     Slice selection in MRI 

Questions may arise how to include magnetic field 
gradient used normally for tissue/vessel site 
selection? With the slice selection field gradients 
the resonance frequencies vary with tissue 
coordinates (x,y,z) depending on the bias magnetic 
field at the time of resonance. So, if the rf B1 field 
is known at the point of consideration, then from 
the signal obtained one should be able to use the 

above equations to obtain the flow velocity 
(assumed to be along x direction) at that point.  

In all the derivations above it is assumed that 
B1(x,t) is uniform in the yz plane This may not be 
the case in actual MRI imaging sequences or blood 
flow mapping. However, we believe that Eqns. 
(36), (37) or (45) can be applied in such cases also 
for computation of the magnetization over and 
hence the MRI signal from a given pixel, if the 
distributions of B1(x,t) over the yz plane is known. 

5.3.     Applications of the above method of 
deriving Eqns. (36), (37) and (45) to diffusion 

MRI 

Diffusion NMR/MRI equations are gaining 
importance recently [24]. Diffusion MRI was 
introduced in the mid-1980s [25]. Warach et al. 
[26] showed that the most successful application of 
diffusion MRI since the early 1990s has been in 
brain ischemia, following the discovery in cat brain 
by Moseley et al. [27] that water diffusion drops at 
a very early stage of the ischemic event. This 
pioneering work on diffusion anisotropy really took 
off with the introduction of the more rigorous 
formalism of the diffusion tensor by Basser et al. 
[28-30]. With diffusion tensor imaging (DTI), 
diffusion anisotropy effects in diffusion MRI data 
could be fully extracted, characterized, and 
exploited and could be providing even more 
exquisite details of tissue microstructure. Many 
studies have been published dealing with the 
optimization of the MRI sequences necessary to 
gain access to the diffusion tensor, the processing 
and display of DTI data, and, of course, potential 
applications. The most advanced application is 
certainly that of fibre tracking in the brain, which, 
in combination with functional MRI, might open a 
window onto the important issue of connectivity. 
Basser and Jones [31] showed that when implanted 
cells proliferate and become organized into tissue, 
the overall diffusion of water decreases because the 
molecules encounter additional physical barriers. 
Diffusion weighted MRI provides a means to 
identify the emerging tissue structure through the 
reduction of the apparent diffusion coefficient. 
However, so far diffusion MRI/NMR or diffusion 
magnetization with and without flow has not been 
given thorough theoretical foundation, especially 
when relaxation times are to be considered. We 
expect that our above methodology will provide the 
correct theoretical equation describing diffusion 
magnetization with flow and relaxation effects. It 
may be mentioned that Bloch Torrey equation [32] 
describes diffusion magnetization without 
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relaxation effects and flow, and therefore from the 
physical point of view it is not applicable to a 
realistic situation that can be studied by MRI. The 
reason is that whether magnetization undergoes 
diffusion with or without flow velocity it must be 
governed by relaxation effects (when in NMR/MRI 
both rf B1 field and bias Bo field are present). We 
shall report later the equations for My and Mx 
magnetizations when both diffusion and flow are 
present along with relaxation effects. Such 
formulations (not reported yet) then can open door 
for correct assessment of relevant diffusion 
parameters from the measured signals for 
application to medical diagnostics and petroleum 
industry. 

6.     Conclusion 

We have derived NMR/MRI blood flow 
magnetization equation in the rotating frame of 
reference. This equation, which is the first of its 
kind, is expected to serve as the mother equation 
for the nuclear spin flow magnetization for all 
NMR/MRI experiments applicable to non-invasive 
blood flow estimation.  We have shown that the 
corresponding equation, which is in literature and 
which is mostly due to the work of Awojyogbe and 
his group, can be derived from our original 
equation under correct assumptions. The method of 
deriving the equation can be extended to 
NMR/MRI spin flow magnetization equation in the 
Laboratory frame and to Bloch-Torey equation for 
inclusion of flow of spins and relaxation times. It is 
needless to mention that the correct signal 
expression can be derived and the flow signal 
computed, once the correct dependence of 
magnetization components of flowing nuclear spins 
on flow velocity, rf B1 field, spatial coordinates, 
relaxation times and other entities is known. This is 
expected to enhance the accuracy of blood flow 
estimation by NMR/MRI experiments.  
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