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Joël Kpléa, Rachidi Adeniyi Yessoufoua and Félix Hontinfindea,b,1
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The mixed spin-1 and spin- 5

2
Ising model with bilinear (J) and biquadratic (K) nearest-neighbor exchange interac-

tions and a single-ion potential or crystal-field interaction (D) is investigated by means of recursion relations on the

Bethe lattice in the presence of a staggered magnetic field. The interactions are assumed to be only between nearest-

neighbors. The competition between model parameters leads to very rich T=0 phase diagrams which may be useful

to explore interesting domains of the finite-temperature phase diagrams of the model. Some thermal properties of the

system are presented. The magnetization is also described by numerical simulations of the model on a square lattice

using Glauber stochastic dynamics in the presence of an oscillating external staggered field. Our present results bear

little resemblance to those previously reported on various kinetic Ising systems obtained by integrating differential

equations.

1. Introduction

In recent years, mixed spin systems of different
magnitudes, in particular, mixed (1/2,5/2) [1–3],
(3/2,5/2) [4–8], (1,2) [9–11] Ising models have been
more or less studied in condensed matter and
statistical physics to describe a variety of multi-
critical (order-disorder) phenomena often observed
in real objects. Indeed, these systems become rele-
vant to an investigation of new bimetallic molecu-
lar compounds, the structure of which bears some
resemblance with two magnetic atoms alternat-
ing on a regular lattice [12]. Numerous experi-
ments indicate that a mix of 3/2 and 5/2 spins
may show the unusual magnetic properties of cer-
tain types of ferric heme proteins known as ferric-
itochrom [13]. On the other hand, many potential
applications use molecular-based materials, where
ferrimagnetic ordering or compensation points play
an essential role [14]. The mixed (1,5/2) Ising
model is an interesting case that remains however
less studied in the literature and calls for a deeper
investigation. Recently, this model has been pro-
posed by Yessoufou et al. [15] and studied by means
of recursion relations. They obtained fairly rich set
of critical behaviors in the presence as well as in
the absence of an external static magnetic field. In
this paper, we extend this model by considering
a staggered magnetic field. The motivation comes
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from several recent works, which pointed out the
importance of this particular constraint in genesis
of anomalous static and dynamic magnetic proper-
ties in one-dimensional spin chains [16]. We draw a
deep analysis of the ground states (GS) configura-
tions of the model. The results may be useful to ex-
plore interesting regions of the finite-temperature
phase diagrams. Similar attempts have been made
in the literature to investigate the ground states
of various Ising systems and the reported results
have been used by other researchers (see [17] and
references therein). Most thermal transitions ob-
served in the model are associated with the mag-
netization reversal phenomenon and are of first or-
der. Kinetic Monte Carlo (KMC) simulations with
the Bortz, Kalos and Lebowitz (BKL) [18] algo-
rithm and Glauber dynamics [19] are considered
on a square lattice with periodic boundary con-
ditions to check some results obtained by recur-
sion relations and explore the dynamical behavior
of the lattice magnetization in the presence of a
time-dependent sinusoidal staggered field. In this
investigation, transition probabilities when the sys-
tem runs from one configuration to another are not
constant as considered in some previous works [20],
but depend on the change in the system’s energy
at any stage of the simulation process. Our cal-
culation shows that stationary values of the lattice
magnetization behave in a non-trivial way with the
field frequency and amplitude. Such a result some-
what contrasts with those reported on several Ising
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systems by integrating kinetic equations [20, 21].
In Section 2, we describe the model and derive

the recursion relations. In Section 3, we construct
and comment on different T=0 phase diagrams.
Some insight on the finite temperature phase dia-
grams is given in Section 4. In Section 5, we de-
scribe the BKL simulation algorithm. In Section
6, simulation results are presented for a sinusoidal
external field. The last section is devoted to con-
clusions.

2. The Recursion Relations of the Model

2.1. The BEG model Hamiltonian

The model is defined on the Bethe lattice (Fig.
1), which consists of two different types of mag-
netic atoms A and B with spin variables Si and
σj . The interaction Hamiltonian considered is that
of Blume-Emery-Griffiths (BEG) type [22] and is
written in the form (see [15]):

H = −J
∑

〈ij〉

Siσj − K
∑

〈ij〉

S2
i σ2

j

−D
(

∑

i

S2
i +

∑

j

σ2
j

)

− h1

∑

i

Si − h2

∑

j

σj

(1)

Where, 〈ij〉 indicates a pair of nearest-neighboring
sites; J and K are coupling constants. The first
sum runs over nearest-neighbor sites. The second
term denotes the biquadratic isotropic exchange in-
teractions, which should be considered for a high-
spin system (S ≥ 1) [23]. Adler gave a discussion
of this term through an extensive review [24] of ex-
perimental results establishing its importance in a
variety of compounds. The third term is a single
ion anisotropy energy due to crystalline field. h1

and h2 are the external staggered fields acting on
the spins. Originally, this Hamiltonian has been
introduced to describe the thermodynamical prop-
erties of He3 − He4 mixtures [22].

2.2. The recursion relations

The Bethe lattice consists of a central spin S0

which may be called the first generation spin. S0

has a number q of nearest-neighbors, which form
the second generation spins. Each site of this
generation is joined to q − 1 nearest-neighbors.
Thus, the second generation has q(q − 1) nearest-
neighbors which form the third generation and so
on to infinity as shown in Fig 1.
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FIG. 1: A Bethe lattice of coordination number q = 3
consisting of two different types of atoms A ans B with spin
variables S and σ respectively.

The partition function of the model is given by:

Z =
∑

e−βH =
∑

Spc

P (Spc)

Where, P (Spc) can be thought of as an non-
normalized probability distribution over the spin
configuration, Spc (e.g., S, σ). Si and σj indicate
the spins’ values at sites i and j, respectively. If
the Bethe lattice is cut at some central point with
a spin S0, spin of type 1, then it splits up into q
identical branches. Each of these q disconnected
pieces is a rooted tree at a central spin S0. This
implies that P (S0), i.e., Spc = S0, of a spin config-
uration with the spin value S0 at the central site,
can be written as:

P (S0) = exp
[

β(DS2
0 + h1S0)

][

gn(S0)
]q

(2)

P (σ1) = exp
[

β(Dσ2
1 + h2σ1)

][

gn−1(σ1)
]q

(3)

Where, S0 is the central spin value of the lat-
tice, gn(S0) the partition function of an individual
branch and the suffix n represents the fact that the
sub-tree has n shells, i.e., n steps from the root to
the boundary sites. Therefore, gn(S0) is written in
terms of summation over spin set {σ1} as

gn(S0) =
∑

{σ1}

exp
[

β(JS0σ1 + Dσ2
1 + KS2

0σ2
1

+ h2σ1)
][

gn−1(σ1)
]q−1

(4)
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Advancing along any branch, we get a site that is
next-nearest to the central spin, hence gn−1(σ1) is
expressed as follows [15]:

gn−1(σ1) =
∑

{S2}

exp
[

β(JS2σ1 + DS2
2 + KS2

2σ2
1

+ h1S2)
][

gn−2(S2)
]q−1

(5)

In order to find the recursion relations, we intro-
duce the following variables as a ratio of gn func-
tions for the spin-1 as follows:

Xn =
gn(+1)

gn(0)
, Yn =

gn(−1)

gn(0)
(6)

and for the spin-5/2 as the ratio of gn−1 functions

An−1 =
gn−1(5/2)

gn−1(−1/2)
, Bn−1 =

gn−1(−5/2)

gn−1(−1/2)
,

Cn−1 =
gn−1(3/2)

gn−1(−1/2)
(7)

Dn−1 =
gn−1(−3/2)

gn−1(−1/2)
, En−1 =

gn−1(1/2)

gn−1(−1/2)
(8)

The BEG model is characterized by two or-
der parameters, the magnetization M and the

quadrupolar moment Q. Four order parameters:
MA,B and qA,B, where A, B refer to the two sub-
lattices may be considered. Their expressions fol-
low:

MA = Z−1
1

∑

{S0}

S0P (S0), qA = Z−1
1

∑

{S0}

S2
0P (S0)

(9)
they are easily expressed in terms of the recursion
relations, namely Eqn. (6), and calculated as:

MA =
e(βD)(e(βh1)Xq

n − e(−βh1)Y q
n )

1 + e(βD)(e(βh1)Xq
n + e(−βh1)Y q

n )
(10)

qA =
e(βD)(e(βh1)Xq

n + e(−βh1)Y q
n )

1 + e(βD)(e(βh1)Xq
n + e(−βh1)Y q

n )
(11)

Similarly, we get:

MB =

{

5e(6βD)(e(3βh2)Aq
n−1 − e(−2βh2)Bq

n−1) + 3e(2βD)(e(2βh2)Cq
n−1 − e(−βh2)Dq

n−1) + (e(βh2)Eq
n−1 − 1)

}

{

2e(6βD)(e(3βh2)Aq
n−1 + e(−2βh2)Bq

n−1) + 2e(2βD)(e(2βh2)Cq
n−1 + e(−βh2)Dq

n−1) + 2(e(βh2)Eq
n−1 + 1)

}

(12)

qB =

{

25e(6βD)(e(3βh2)Aq
n−1 + e(−2βh2)Bq

n−1) + 9e(2βD)(e(2βh2)Cq
n−1 + e(−βh2)Dq

n−1) + (e(βh2)Eq
n−1 + 1)

}

{

4e(6βD)(e(3βh2)Aq
n−1 + e(−2βh2)Bq

n−1) + 4e(2βD)(e(2βh2)Cq
n−1 + e(−βh2)Dq

n−1) + 4(e(βh2)Eq
n−1 + 1)

}

(13)

First-order phase transitions in the model may
be detected using either the analysis of the free en-
ergy of the system or jumps in the total magneti-
zations. The second order transitions are obtained
when both sublattice magnetizations continuously
vanish (see [15]).

3. T=0 Phase Diagrams

The staggered magnetic field is obtained by setting
h=h1=-h2. The GS energies are obtained from
equation (1) in units of |J | by rewriting it in the
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following form,

E

|J |
= −

∑

〈ij〉

[ J

|J |
Siσj +

D

q|J |
(S2

i + σ2
j )

+
K

|J |
S2

i σ2
j +

h

q|J |
(Si − σj)

]

(14)

Where, the summation runs over all nearest-
neighbor sites.

We compare computed energy values of differ-
ent spin configurations. Configurations with low-
est energies for varying values of model parameters
correspond to the GS configurations. The set of
points in the parameters’ space for which a given
configuration is the ground state gives the stability
region of this phase. It should be mentionned that
the variable q is somewhat used as a hidden vari-
able in the above definition of GS energies, there-
fore, these GS phase diagrams are obtained for a
general q value, i.e., for any coordination number.
In the diagrams, there are boundary lines (coex-
istence lines) separating different types of phases.
The points at which these lines meet are multi-
phase points where all the involved phases coexist.

The GS phase diagrams are first constructed for
fixed values of h/q|J | in the plane (D/q|J |, K/|J |).
We first set h/q|J | = 0; the system becomes then
invariant under a global inversion of spins. We
compare the diagrams for positive and negative
values of J and get results that are topologically
independent of the sign of J with some common
phases as (0,-1/2); (0,-5/2). The corresponding
GS and energies are given in Table I. Equations
of coexistence lines between phases are given in

Table II. For J < 0, other phases of the dia-
gram correspond to sublattices with antiparallel
spins. For J > 0 and positive (non-zero) values
of h/qJ , the energetically unfavorable phase (0,-
3/2) appears and its domain grows while domains
of other phases, namely (-1,-3/2),(1,1/2), (0,-1/2)
and (0,-5/2) shrink. The partially ordered phases
(0,-1/2) and (0, -5/2) recorded at h=0 are not sta-
ble at finite temperature in the absence of the field
constraint [15]. We also notice that large values of
D/qJ and K/J do not influence significantly the
phase diagrams. The diagrams appear richer for
small values of K/J with small and negative values
of D/qJ . In the following, we will concentrate our
investigation on this region of model parameters
at relatively small values of h/qJ . In regions IV
and V, the energies of the ground states are inde-
pendent of the sign of J . At the diagram’s points
( D

q|J| ,
K
|J| ) = (− 5

4 , 1), ( 5
28 ,− 3

7 ), ( 1
14 ,− 4

7 ), (0,−2),

(− 1
2 , 0), three different regions coexist.
In the following, we first consider the model with

ferromagnetic coupling J > 0 and positive values
of h/qJ . For negative values of h/qJ , the mag-
netizations only change sign due to the symmetry
requirement, M(−h) = −M(h) as observed in Ta-
ble III, where nine possible spin configurations are
recorded with their respective energies.

The GS phase diagrams in the (D/qJ, K/J)
plane for different values of h/qJ are shown in Fig.
2b-f. The topology of these diagrams is somewhat
similar to the one obtained for h/qJ = 0. It is im-
portant to mention that phase (IX) only prevails
in the negative part of the D/qJ-axis.

TABLE I: Ground state energies of the model for h = 0; D′ = D/q|J |, K′ = K/|J | (Fig. 2a).

Phase Ground state Energy

I (±1,±5/2) J > 0 (±1,∓5/2) J < 0 − 5

2
− 29

4
D′ − 25

4
K′

II (±1,±3/2) J > 0 (±1,∓3/2) J < 0 − 3

2
− 13

4
D′ − 9

4
K′

III (±1,±1/2) J > 0 (±1,∓1/2) J < 0 − 1

2
− 5

4
D′ − 1

4
K′

IV (0,±5/2) − 25

4
D′

V (0,±1/2) − 1

4
D′
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TABLE II: Coexistence curves of the model for h = 0; D′ = D/q|J |, K′ = K/|J |. Different phases are defined in
Table I.

Region Coexistence line D′ Range K′ Range

I-II D′ = −K′ − 1

4
− 5

4
≤ D′ ≤ 5

28
− 3

7
≤ K′ ≤ 1

I-IV D′ = −25K′ − 5

2
D′ ≥ 5

28
K′ ≤ − 3

7

I-V D′ = − 25

28
K′ − 5

14
D′ ≤ − 5

4
K′ ≥ 1

II-III D′ = −K′ − 1

2
− 1

2
≤ D′ ≤ 1

14
− 4

7
≤ K′ ≤ 0

II-IV D′ = 3

4
K′ + 1

2

1

14
≤ D′ ≤ 5

28
− 4

7
≤ K′ ≤ − 3

7

II-V D′ = − 3

4
K′ − 1

2
− 5

4
≤ D′ ≤ − 1

2
0 ≤ K′ ≤ 1

III-IV D′ = 1

20
K′ + 1

10
0 ≤ D′ ≤ 1

14
−2 ≤ K′ ≤ − 4

7

III-V D′ = − 1

4
K′ − 1

2
− 1

2
≤ D′ ≤ 0 −2 ≤ K′ ≤ 0

IV-V D′ = 0 D′ = 0 K′ ≤ −2

For 0 < h/qJ < 1, the ground state phase dia-
grams (see Fig. 2b,c) exhibit only six GS configu-
rations, namely phases (I), (V), (VI), (VII), (VIII)
and (IX). The phase (V) is present for all values of
D/qJ . Positive K/J values enlarge its stability do-
main. On the other hand, as h/qJ increases, the
phase (VIII) becomes more favorable and phases
(I) and (VI) can only occur in some small restricted
area. Note also that as h/qJ increases, the area of
the phase (IX) is reduced, whereas areas of phases
(VII) and (VIII) are extended.

For h/qJ = 1 (Fig. 2d), phases (I) and (VI) dis-
appear and are replaced by two other phases when
1 < h/qJ < 3/2, so that the number of phases be-
comes six as before. Here, phase I is replaced by
phase IV. For h/Jq = 3/2 (Fig. 2e), phases (IV),
(V), (VII), (VIII) and (IX) are observed. Phase
(VI) which appears for previous values of h/qJ
does not exist. For 3/2 < h/qJ < 5/2, phases
(IV), (V), (VII), (VIII), and (IX) remain in the
same region as before, but phase (VI) is replaced
by phase (III) for all h/qJ > 3/2.

At h/qJ = 2.0, the ground state phase diagram
shows five visible configurations, i.e., phases (IV),
(V), (VII), (VIII) and (IX); but the phase (III) also
exists and lies along the multiphase line separating
phases (IV), (V) and (IX). It appears evident that

for larger values of h/qJ , h/qJ = 5/2 for instance,
the phase (III) will be contained in a region sepa-
rating phases (IV), (V) and (IX).

When h/qJ = 5/2, Fig. 2f, phases (II) and (V)
coexist but for h/qJ > 5/2, this coexistence dis-
appears and only phase (II) survives. According
to their location in the GS phase diagrams, phases
(II), (III) and (IV) appear as the result of a com-
petition between the interaction parameters J and
h.

The GS phase diagrams in Fig. 3 are obtained
in the (h/qJ, K/J) plane for some selected val-
ues of D/qJ . For positive and non-zero values of
D/qJ , the system only presents configurations (II),
(V) and (VII) as observed in Fig. 3a. The di-
agrams look similar for all positive values of the
reduced crystal-field, which means that the lat-
ter has no splitting effect on the topology when
its value remains in this range. At large values
of K/J , phases (II) and (V) are separated by a
multiphase line, but for lower negative values of
K/J , phase (VII) is separated from phases (II)
and (V) by two multiphase lines, the first one for
h/qJ > 5/2 and the second one for h/qJ < 5/2.
As K/J becomes more and more negative, the zero
value of the spin becomes persistent, thus leaving
the sublattice A in a diamagnetic zero phase. For
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TABLE III: Ground states energies of the model for J > 0, and h 6= 0; D′ = D/qJ , K′ = K/J and h′ = h/qJ .

Phase Ground state Energy

I (+1, +1/2) h′ > 0 (−1,−1/2) h′ < 0

(

− 1

2
− 5

4
D′ − 1

4
K′ − 1

2
h′ si h′ > 0

− 1

2
− 5

4
D′ − 1

4
K′ + 1

2
h′ si h′ < 0

II (+1,−5/2) h′ > 0 (−1, +5/2) h′ < 0

(

5

2
− 29

4
D′ − 25

4
K′ − 7

2
h′ si h′ > 0

5

2
− 29

4
D′ − 25

4
K′ + 7

2
h′ si h′ < 0

III (+1,−3/2) h′ > 0 (−1, +3/2) h′ < 0

(

3

2
− 13

4
D′ − 9

4
K′ − 5

2
h′ si h′ > 0

3

2
− 13

4
D′ − 9

4
K′ + 5

2
h′ si h′ < 0

IV (+1,−1/2) h′ > 0 (−1, +1/2) h′ < 0

(

1

2
− 5

4
D′ − 1

4
K′ − 3

2
h′ si h′ > 0

1

2
− 5

4
D′ − 1

4
K′ + 3

2
h′ si h′ < 0

V (−1,−5/2) h′ > 0 (+1, +5/2) h′ < 0

(

− 5

2
− 29

4
D′ − 25

4
K′ − 3

2
h′ si h′ > 0

− 5

2
− 29

4
D′ − 25

4
K′ + 3

2
h′ si h′ < 0

VI (−1,−3/2) h′ > 0 (+1, +3/2) h′ < 0

(

− 3

2
− 13

4
D′ − 9

4
K′ − 1

2
h′ si h′ > 0

− 3

2
− 13

4
D′ − 9

4
K′ + 1

2
h′ si h′ < 0

VII (0,−5/2) h′ > 0 (0, +5/2) h′ < 0

(

− 29

4
D′ − 5

2
h′ si h′ > 0

− 29

4
D′ + 5

2
h′ si h′ < 0

VIII (0,−3/2) h′ > 0 (0, +3/2) h′ < 0

(

− 9

4
D′ − 3

2
h′ si h′ > 0

− 9

4
D′ + 3

2
h′ si h′ < 0

IX (0,−1/2) h′ > 0 (0, +1/2) h′ < 0

(

− 1

4
D′ − 1

2
h′ si h′ > 0

− 1

4
D′ + 1

2
h′ si h′ < 0

D/qJ ≤ 0 (Fig. 3c,d), the GS phase diagrams
deeply change and present a particular richness.
Multiphase lines are splitted by new configura-
tions. For example, for D/qJ = 0 (Fig. 3b), the
configurations (I) and (VI) are observed in addi-
tion to other three configurations; the equations
of coexistence lines are given in Table IV. At the
points ( h

qJ
= 3

16 , K
J

= − 1
2 ), ( h

qJ
= 5

2 , K
J

= 0) and

( h
qJ

= 15
41 , K

J
= − 14

41 ), three phases coexist.

The GS phase diagrams in the (h/qJ, D/qJ)
plane are displayed in Fig. 4. For K/J > 0
(Fig. 4a,b) phases (II), (III), (IV), (V) and (IX)
are still present and the two panels look similar.
For K/J = 0 (Fig. 4c), the equations of coex-
istence lines are given in Table V. From this di-
agram, one can deduce some interesting features:

there are two points where three phases coexist;
( h

qJ
= 5

2 , D
qJ

= 0) and ( h
qJ

= 3, D
qJ

= − 1
2 ), and two

points where four phases coexist: ( h
qJ

= 1, D
qJ

=

− 1
2 ) and ( h

qJ
= 2, D

qJ
= − 1

2 ).

When K/J < 0, the multiphase lines split again
by new configurations (Fig. 4d-f). The GS phase
diagrams show a vast variety of ground states for
selected negative values of (K/J). They look qual-
itatively similar.

Some results in the case J < 0 are illustrated
in Fig. 5. Six different types of GS configu-
rations are found (see Table VI), namely phases
(II), (III), (IV), (VII), (VIII) and (IX). In Fig.
5, we construct the GS phase diagrams on the
(h/q|J |, K/|J |) plane for some values of D/q|J |.
For D/q|J | = 1.0 (Fig. 5a) only phases (II) and
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FIG. 2: Ground state phase diagrams for selected values of h/qJ and varying D/qJ and K/J . The different phases indicated
with roman numbers are explicited in Table I for h = 0 (panel a) and in Table III for non-zero h/qJ (panels b-f).

(VII) are recovered with (II) in the upper half
plane, while the other is contained in the lower
half plane. When D/q|J | = 0.0 (Fig. 5b), two ad-
ditional configurations (III and IV) appeared. The
equation of coexistence lines are given in Table VII.
Fig.5c is obtained for D/q|J | = −0.50, where new
phases appeared in addition to other four phases.
The GS phase diagram in Fig. 5d is similar to that
in Fig. 5c but now, a boundary between phases
(III) and (IX) is observed.

We have also calculated GS phase diagrams in
the (h/q|J |, D/q|J |) plane for selected values of
K/|J |. They appear less rich and complicated than

those obtained for J > 0. For K/|J | = 1.0, only
phases (II), (III), (IV) and (IX) are observed. At
K/|J | = 0.0, the phase diagram looks similar to
the previous one except that the boundary between
phases (III) and (IX) disappears. The equations of
coexistence lines are given in Table VIII and the
indicated phases are explained in Table VI.
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4. Thermal Phase Diagram of the Model

Beyond the T=0 phase diagram, one would like to
know the systems behavior when the temperature
is raised from zero to higher values. Some results to
deal with this concern are displayed through Fig.
6. In the following, we take J > 0 and q=3. In Fig.
6a, all other couplings are zeroed. One observes
that the sub-lattice magnetizations decreases from
their T=0 saturation values to zero continuously,
whereas the associated quadrupole moments still
have non-zero values. The transition to the dis-
ordered paramagnetic phase is clearly of second
order. In the paramagnetic phase, several anti-
parallel spins may exist due to the non-zero values
of qA and qB. The influence of h on the previous
results is presented in Fig. 6b, where h/J = 0.2.
The behavior of Magnetization shows agreement
with Fig. 2b. Indeed, Fig. 6b shows a T=0 sat-
uration phase, which is (-1,-5/2), i.e., phase V in
Table III. When D/qJ = 0 and K/J = 0, we get
exactly the phase V as predicted in Fig. 2b. There,
one easily identifies two jumps in mA and mB cor-
responding to first order transitions between sta-
ble ordered phases. The order parameters qA and
qB seem not to be affected by these transitions.
This suggests that these transitions are simply as-
sociated to a global magnetization reversal of the
system. It is clear that a second order transiton
is absent here. Depending on the field strength,
the magnetization reversal occur in Ising systems
either by nucleation of a single critical droplet (of
spins) of the new phase or by simultaneous nucle-
ation of many critical droplets [25]. The paramag-
netic phase is reached at high temperature through
a crossover region.

In Fig. 6c-f some thermal phase diagrams are
presented for some selected values of D/J and
K/J . One observes that positive values of K/J or
D/J lead to some reentrant phase diagrams with
about two first-order transition temperature val-
ues Tc1 and Tc2 at fixed h/J and varying T/J . Tc1

disappears with decreasing K/J and also D/J as
in Fig. 6d. Concerning the transitions, they are of
two kinds: magnetization reversal and low-spin to
high-spin kind similar to the one often observed in
spin-crossover solids [26]. In the latter case, sub-
sequent jumps may be observed in the quadrupole
moments of the system. In Fig. 6f, we compare
order-disorder effect of coupling constants D and
K on the model. When both are non-zero with pos-
itive values, results are similar to the case D/J = 0
and K/J = 0.5; this means that in the presence of

K/J and h/J , the coupling D/J is actually play-
ing a minor role in the spin-flip dynamics. One
can also notice that positive values of D and K
have a stabilizing effect on the T=0 phases at low
temperature (see Fig. 6c,e).

Other phases from Table III are found at other
values of model parameters. For example, at
D/J = −1 and K/J = −1 (see Fig. 4f), phase (0,-
1/2) prevails at h/J = 0.1 and low values of T/J
(phase IX in Table III) and decays as T increases
to (0,0). At h/J = 1, the T=0 saturation phase is
(1,1/2), which transits to phase (0,-1/2) and later
to the paramagnetic phase (0,0). At h/J = 1.5,
we gets at low T, phase (1,1/2) which transits to
phase (0,-3/2) and later decays to phase (0,0) at
high temperature. At h/J = 5/2, the T=0 sat-
uration phase is (0,-3/2); it also decays to (0,0).
The high-temperature phase is always the param-
agnetic phase (0,0). It is reached through second
order transitions at h/J = 0 for all model param-
eters considered in the text.

5. KMC Simulation Procedure

Monte Carlo simulations are numerical experi-
ments that have been proven efficient in studying
a wide variety of physical systems ranging from el-
ementary particle systems to those in astronomy
(see [27] and references therein). Here, we use
the algorithm developed by BKL [18] to investi-
gate some dynamical properties of the model on a
square lattice of size L with the coordination num-
ber q = 4. The simulation is propagated as follows.
First, an initial configuration σ (of linear size L)
of the system is chosen and then one calculates the
total number of possible spin-flip processes. This
leads to another configuration σ′, say N . Let us
denote by W (σ → σ′) the transition probability
from σ to σ′. By using the Glauber spin-flip dy-
namics, W reads [19]:

W (σ, σ′) =
1

1 + eβ∆E
(15)

Where, ∆E denotes the change in the energy of
the system associated to the spin-flip move. Then,
one calculates the total evolution rate R(σ) of σ
by considering all possible processes:

R(σ) =

N
∑

a=1

Wa (16)

Where, a stands for the number of possible spin-
flip process. After that, two random numbers
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0 ≤ r1, r2 ≤ 1 are chosen to calculate the real
lifetime τ(σ) = − ln(r1)/R(σ) of configuration σ
and a random evolution rate: η(σ) = r2R(σ). The
number of processes is b such that the partial sum:

b
∑

a=1

Wa > η(σ) (17)

is realized with probability 1. After a suitable num-
ber nMC (found to be about 4.103L2 up to L=100)

of spin updates, the steady state is reached. The

total evolution time t is given by: t =
∑

σ

τ(σ),

where the sum runs over all spin configurations
generated up to the steady state. Different physi-
cal quantities (e.g., magnetization m, fourth order
cumulant U and others ) are calculated by a time-
averaging procedure. The calculated fourth order

cumulant has the expression: U = 1 − <m4>
3<m2>2 .
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FIG. 3: Ground state phase diagrams for selected values of D/qJ and varying h/qJ and K/J . The different phases indicated
by Roman numbers are explained in Table III.
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TABLE IV: Coexistence curves of the model for D = 0; K′ = K/J and h′ = h/qJ . Different phases refer to Table III.

Region Coexistence line K′ Range h′ Range

I-VI K′ = − 1

2
K′ = − 1

2
0 ≤ h′ ≤ 3

16

I-VII K′ = 8h′ − 2 −2 ≤ K′ ≤ − 1

2
0 ≤ h′ ≤ 3

16

II-V h′ = 5

2
K′ ≥ 0 h′ = 5

2

II-VII K′ = − 4

25
h′ + 2

5
K′ ≤ 0 h′ ≥ 5

2

V-VI K′ = − 1

4
h′ − 1

4
− 14

41
≤ K′ ≤ − 1

4

3

16
≤ h′ ≤ 15

41

V-VII K′ = 4

25
h′ − 2

5
− 14

41
≤ K′ ≤ 0 15

41
≤ h′ ≤ 5

2

VI-VII K′ = 8

9
h′ − 2

3
− 1

2
≤ K′ ≤ − 14

41

3

16
≤ h′ ≤ 15

41

TABLE V: Coexistence curves of the model for K = 0; D′ = D/qJ and h′ = h/qJ . Different phases refer to Table III.

Region Coexistence line D′ Range h′ Range

II-III D′ = − 1

4
h′ + 1

4
D′ ≤ − 1

2
h′ ≥ 3

II-V h′ = 5

2
D′ ≥ 0 h′ = 5

2

II-VII D′ = −h′ + 5

2
− 1

2
≤ D′ ≤ 0 5

2
≤ h′ ≤ 3

III-IV D′ = − 1

2
h′ + 1

2
D′ ≤ − 1

2
h′ ≥ 2

III-VII D′ = − 1

2
D′ = − 1

2
2 ≤ h′ ≤ 3

IV-V D′ = − 1

2
D′ = − 1

2
1 ≤ h′ ≤ 2

IV-IX D′ = −h′ + 1

2
D′ ≤ − 1

2
h′ ≥ 1

V-VI D′ = − 1

4
h′ − 1

4
− 1

2
≤ D′ ≤ − 1

4
0 ≤ h′ ≤ 1

V-VII D′ = h′ − 5

2
− 1

2
≤ D′ ≤ 0 2 ≤ h′ ≤ 5

2

VI-IX D′ = − 1

2
D′ = − 1

2
0 ≤ h′ ≤ 1
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FIG. 4: Ground state phase diagrams for selected values of K/J and varying h/qJ and D/qJ . The different phases indicated
with Roman numbers are explained in Table III.

Actually, the present KMC simulations are in-
tended to evaluate the magnetization m(t) of the
lattice, which may be defined as:

m(t) =
∑

σ

Mσ(t).P (σ, t) (18)

Where, P (σ, t) stands for the probability that the
system lies in configuration σ at real time t and
Mσ(t) denotes the statistically averaged magneti-
zation associated to configuration σ at time t. The
time evolution of P (σ, t) is given by the kinetic
equation:

dP (σ, t)/dt = −
∑

σ′

W (σ → σ′)P (σ, t)

+
∑

σ′

W (σ′ → σ)P (σ′, t) (19)

P (σ, t) can be calculated exactly on finite samples
by the transition matrix method [28].

6. Simulation Results

We find instructive to investigate some properties
of the model in the presence of a time-dependent
external field acting on the system as: h0sin(ωt),
where ω denotes the field frequency and h0 its am-
plitude. Due to the multiplicity of spin states on
both sub-lattices, one may expect some non-trivial
behavior. First, some results by numerical simula-
tions on the model are compared to those obtained
for q = 4 on the Bethe lattice in the context of
static field. The Bethe lattice results should cor-
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FIG. 5: Ground state phase diagrams for selected values of D/q|J | and varying h/q|J | and K/|J |. The different phases indicated
with Roman numbers are explained in Table VI.

respond to exact results for an infinite square lat-
tice within the Bethe-Peierls approximation [29].
This allows one to check the accuracy of the sim-
ulations. In Fig. 7a, full line shows the magneti-
zation for some fixed values of the model param-
eters: D/J=0, K/J=0 and h/J=0, whereas signs
correspond to simulation results. For these val-
ues, KMC simulations are performed on systems
with linear sizes L = 40 and L = 100 with a
number of updates/site, which is about 4.103. Re-
sults by KMC agree with those by recursion re-
lations with a marked accuracy at low tempera-
ture. Indeed, the average steady state total mag-
netization m coincides at low temperature, but at
high temperature where thermal fluctuations be-
come important some discrepancy appears. The
critical temperature calculated by recursion rela-
tions is Tc ≃ 4.4J , whereas the one given by the

Binder crossing point of the cumulants associated
to system sizes L = 30; 40 is Tc ≃ 4.5J as shown
in Fig. 7b. In Fig. 7c, we compare first or-
der transition lines obtained by both methods in
the case of varying values of the field strength for
D/J = −1, K/J = 0. Although the two transi-
tion lines are different from each other, they again
show trends that the simulation procedure is reli-
able. In the following, these simulations are used
to study dynamical behaviors of the lattice mag-
netization in presence of a time-dependent field.
Our aim here is not to draw a complete picture
of the dynamics. Instead we would like to point
out that drawing dynamic phase diagrams should
only be possible within some drastic approxima-
tions. Indeed, even in the simple case of the kinetic
spin-1 Blume-Capel model [20], KMC simulations
show long-time limit behaviors of the magnetiza-
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TABLE VI: Ground states energies of the model for J < 0, and h 6= 0; D′ = D/q|J |, K′ = K/|J | and h′ = h/q|J |.

Phase Ground state Energy

II (+1,−5/2) h′ > 0 (−1, +5/2) h′ < 0

(

− 5

2
− 29

4
D′ − 25

4
K′ − 7

2
h′ si h′ > 0

− 5

2
− 29

4
D′ − 25

4
K′ + 7

2
h′ si h′ < 0

III (+1,−3/2) h′ > 0 (−1, +3/2) h′ < 0

(

− 3

2
− 13

4
D′ − 9

4
K′ − 5

2
h′ si h′ > 0

− 3

2
− 13

4
D′ − 9

4
K′ + 5

2
h′ si h′ < 0

IV (+1,−1/2) h′ > 0 (−1, +1/2) h′ < 0

(

− 1

2
− 5

4
D′ − 1

4
K′ − 3

2
h′ si h′ > 0

− 1

2
− 5

4
D′ − 1

4
K′ + 3

2
h′ si h′ < 0

VII (0,−5/2) h′ > 0 (0, +5/2) h′ < 0

(

− 29

4
D′ − 5

2
h′ si h′ > 0

− 29

4
D′ + 5

2
h′ si h′ < 0

VIII (0,−3/2) h′ > 0 (0, +3/2) h′ < 0

(

− 9

4
D′ − 3

2
h′ si h′ > 0

− 9

4
D′ + 3

2
h′ si h′ < 0

IX (0,−1/2) h′ > 0 (0, +1/2) h′ < 0

(

− 1

4
D′ − 1

2
h′ si h′ > 0

− 1

4
D′ + 1

2
h′ si h′ < 0

TABLE VII: Coexistence curves of the model for D = 0; K′ = K/|J | and h′ = h/q|J |. Different phases refer to
Table VI.

Region Coexistence line K′ Range h′ Range

II-III K′ = − 1

4
h′ − 1

4
− 2

3
≤ K′ ≤ − 1

4
0 ≤ h′ ≤ 5

3

II-VII K′ = − 4

25
h′ − 2

5
K′ ≤ − 2

3
h′ ≤ 5

3

III-IV K′ = − 1

2
h′ − 1

2
− 2

3
≤ K′ ≤ − 1

2
0 ≤ h′ ≤ 1

3

III-VII K′ = − 2

3
K′ = − 2

3

1

3
≤ h′ ≤ 5

3

IV-VII K′ = 4h′ − 2 −2 ≤ K′ ≤ − 2

3
0 ≤ h′ ≤ 1

3

tion, which strongly depend on the field frequency
and amplitude [30].

Fig. 8a illustrates the behaviors of the total av-
erage magnetization of a system of size L = 100
for three different values of the field frequency:
ω = 0.5; 1.0; 10.0 rads/sec. The GS config-
uration used for the simulations is (+1,-5/2) at
T = 0.5J and field amplitude h0 = 0.5J . Evi-

dently, the long-time limit values of m(t) are not
the same. This means that any physical quantity
calculated, when t → ∞, should depend of the field
frequency. In other words, the dynamic order pa-
rameter Q = ω

2π

∮

m(t)dt often defined as one pe-
riod time-averaged magnetization should depend
on the field frequency ω. The stationary values
of m(t) seem to be an increasing function of the
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FIG. 6: Thermal behavior of sub-lattice order parameters m and Q at h/J = 0; D/J = 0; K/J = 0 (a) and h/J = 0.2 and
D/J = 0 and K/J = 0 (b). In panel (a), there is a second order phase transition between a ferromagnetic and a paramagnetic
phases, whereas in (b) jumps occur in the magnetization showing first order transitions between ordered phases. In panels
(c−f), thermal phase diagrams are presented for D/J = ±0.5 and K/J = 0. (c); D/J = −1 and K/J = 0 (d); K/J = ±0.5 and
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TABLE VIII: Coexistence curves of the model for K =
0; D′ = D/q|J | and h′ = h/q|J |. Different phases refer
to Table VI.

Region Coexistence line D′ Range h′ Range

II-III D′ = − 1

4
h′ − 1

4
D′ ≤ − 1

4
h′ ≥ 0

III-IV D′ = − 1

2
h′ − 1

2
D′ ≤ − 1

2
h′ ≥ 0

IV-IX D′ = −h′ − 1

2
D′ ≤ − 1

2
h′ ≥ 0

frequency. However other calculations show that
this behavior is not so trivial but temperature-
dependent (see Fig.8c). What appears evident is
that with increasing temperature, the stationary
values of m(t) decrease suggesting that the dy-
namic order parameter Q should decrease with the
temperature. Other surprising results given by the
simulations are displayed in Fig.8e. Actually, the
time evolution should depend on initial conditions
but the stationary behaviors might be the same.
Panels (c) and (e) display results that contrast with
this picture because the expected saturated values
of m(t) or simply the expected values of Q seem
to depend on the GS configurations. Hence, the
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FIG. 7: Compared results by recursion relations (full line) on the Bethe lattice and KMC simulations on a square lattice (signs)
of sizes L = 100 and L = 40 for a coordination number q = 4 (panel (a)). In panel (b), a binder crossing point of cumulants
UL(t) calculated for two system sizes L = 40 and L = 30 is shown. This point indicates a transition temperature Tc = 4.5J ,
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system presents some chaotic features. In panel
(b), we show the stationary behavior of m(t) for
ω = 1.0rads/sec. The dynamical behavior of the
system is evident. The magnetization reproduces
exactly the period of the field. Maxima and min-
ima of m(t) are slowly decaying in this region of
ωt investigated but the amplitude and the period
of m(t) appear somewhat constant. Calculations
of energy loss that is proportional to hysteresis
area can only be performed within some approx-
imations since associated hysteresis curves should
not be completely closed in such situation. In Fig.
8d,f the effect of the field amplitude on m(t) is il-
lustrated at two field frequencies. Here again the
behavior of m(t) is non-trivial. At large frequen-
cies, stationary values of m(t) decrease with the
field amplitude, whereas at low frequencies, differ-
ent trends are observed.

We also checked the influence of the reduced

crystal-field strength D/J on the stationary be-
haviors of m(t) for two initial configurations: (+1,
-5/2) and (+1, +5/2) at fixed values of the field
frequency. The results revealed also non-trivial be-
haviors of m(t) and the stationary states are initial
configurations dependent. One may be tempted to
perform several runs and make averages over for
the two quantities, the magnetization m(t) and the
real evolution time t, at each update per site. This
method gives good dynamical behavior of m(t)
as observed in Fig. 8b in some time ranges and
chaotic behavior in other ranges with some cellular
structures as observed some time ago by one of the
authors [31] on chaotic growing 1d-interfaces. Fur-
ther investigations of the dynamics are certainly
needed to substantiate information on the present
model and to check whether most reported phe-
nomena are due to the staggered nature of the ex-
ternal field acting on the two sub-lattices.
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FIG. 8: Time evolution of the lattice total magnetization m(t) were obtained by KMC simulations for a system of size L = 100.
The values of the model parameters considered are written in different panels. In panels (a), (c) and (e), the effect of the
field frequency on m(t) is shown for two different GS configurations. On the contrary, in panels (d) and (f), the effect on the
amplitude on the stationary behavior of m(t) is investigated for the same initial configuration. Calculations are performed for
K/J = −0.5 and D/J = 0. Behaviors of m(t) with model parameters appear non-trivial.

7. Conclusion

In this work, we study a ferromagnet described
by a BEG Hamiltonian that comprises an external
staggered magnetic field. We extensively investi-
gated the T=0 phase diagram of the model which
appeared very rich. We defined different ground
state configurations, calculated their energies and
equations of coexistence lines between them. These
T=0 phase diagrams may give insight on the model
properties in situations where the temperature ap-
pears as a non relevant parameter and also on the

low-temperature behavior of the model. Thermal
behaviors of sub-lattice magnetizations have been
calculated in the presence of the input field. We
exclusively observed, within the domain of param-
eters analyzed, first order transitions between or-
dered phases. The paramagnetic phase (0,0) is ob-
tained at high temperatures after crossover regions
where sublattice magnetizations progressively van-
ish. The model is also investigated in the pres-
ence of a time-dependent sinusoidal field. Several
anomalous behaviors of the stationary values of
the lattice magnetization have been reported with
varying model parameters. These results particu-
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larly depend on initial conditions, field amplitude
and frequency.
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(2007).
[4] E. Albayrak and A. Yigit, Phys. Status Solidi B

244, 748 (2007).
[5] E. Albayrak and A. Yigit, Phys. Lett. A 353, 121

(2006).
[6] Q. Zhang, G. Wei and Y. Gu, Phys. Status Solidi

B 242, 924 (2005).
[7] R. A. Yessoufou, A. H. Amoussa and F. Hontin-

finde, Cent. Eur. J. Phys. 7, 555 (2009).
[8] N. De La Espriella and G. M. Buend̀ıa, Physica A

389, 2725 (2010).
[9] M. Keskin, M. Ertas and O. Canko, Phys. Scr. 79,

025501 (2009).
[10] Z. G. Wei, W. Y. Gu and J. Liu, Phys. Rev. B 74,

024422 (2006);
Q. Zhang, G. Wei, Z. Win and Y. Lang, J. Magn.
Magn. Mater. 280, 14 (2004).

[11] E. Albayrak and A. Yigit, Physica A 349, 471
(2005).

[12] O. Khan, Molecular Magnetism, VCH, New york,
1993;
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