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In this article, we are interested in deriving the Fokker-Planck equation, which is based on the Langevin equation for 
Brownian motion and then find an explicit form of a certain probability distribution by using a mathematical method. We 
also calculated the velocity moments for this system. 
 
 
 

1.     Introduction 

Theoretical physics can be roughly viewed as the 
study of solutions of differential equations and the 
modeling of natural phenomena by deterministic 
solutions of differential equations. 

The quest for a mathematical description of the 
Brownian trajectories led to a new class of 
differential equations, namely the so-called 
stochastic differential equations. Such equations 
can be regarded as the generalization pioneered by 
Paul Langevin of Newtonian mechanical equations 
that are driven by independent stochastic 
increments obeying either a Gaussian (white 
Gaussian noise) or the Poisson statistics (white 
Poisson noise). This yields a formulation of the 
Fokker-Planck equation (master equation) in terms 
of a nonlinear Langevin equation generally driven 
by multiplicative white Gaussian (Poisson) noise(s) 
[1]. 

As the aforementioned independent increments 
correspond to no bounded trajectory variations, the 
integration of such differential equations must be 
given a more general meaning. This led to the 
stochastic integration calculus of either the Ito type 
or the Stratonovich type. In recent years, this 
method of modeling the statistical mechanics of 
generally nonlinear systems driven by random 
forces has been developed further to account for 
physically more realistic noise sources possessing a 
finite or even infinite noise-correlation time. 

The general Fokker-Planck equation for one 
variable x has the form [2]: 
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In this equation, )()1( xD  is called the drift 

coefficient and 0)()2( >xD  is the diffusion 

coefficient. Eqn. (1) is the equation of motion for 
the distribution function ),( txw . 

2.     Langevin Equation for Brownian Motion 

If a small particle of mass immersed in a fluid, a 
friction force will act on the particle. The simplest 
expression for such a friction force is given by 
Stokes law [3]: 
 

vFc α−=                               (2) 

 
Therefore, the equation of motion for the particle in 
the absence of additional forces reads:  
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Thus an initial velocity )0(v  decreases to zero with 

the relaxation time 
γ

τ 1=  according to the formula 
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The physics behind the friction is that the 
molecules of the fluid collide with the particle. The 
momentum of the particle is transferred to the 
molecules of the fluid and the velocity of the 
particle therefore decreases to zero. If the mass of 
the small particle is still large compared to the mass 
of the molecules, one expects Eqn. (3) to be valid 
approximately. Eqn. (3) must be modified so that it 
leads to correct thermal energy. The modification 
consists in adding a fluctuation force )(tF f  on the 

right-hand side of Eqn. (3). 
Then, the total force of the molecules acting on 

the small particle is decomposed into a continuous 
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damping force )(tFc  and a fluctuating force, 

)(tF f , satisfying 

 
)()()()()( tFtvtFtFtF ffc +−=+= α          (6) 

 
By inserting Eqn. (6) into Eqn. (3) and dividing by 
the mass, we get the equation of motion: 
 

)(tvv Γ=+ γ&                              (7) 

 
Here, we have introduced the fluctuating force per 
unit mass as 
 

m
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which is called the Langevin equation for 
Brownian motion.  

3.     How to Derive Fokker-Planck Equation in 
Brownian Motion by Langevin Equation 

We start with Eqn. (7), where v  is velocity of 
particle and defines )(tΓ . 

The white noise, on the other hand, is a Fourier 
transformation having the form [4]: 
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Since the force ),( txΓ  is Gaussian, we can use the 

standard trick of the theory of Langevin equation, it 
is called the Novikov theory [5,6]: 
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Now, we multiply vie λ  by tZ  and making use of 

Eqns. (9) and (10), we get 
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Eqn. (18) is called the Fokker-Planck equation for 
Brownian motion. Now, we are interested in 
calculating the distribution function. 

4.     Exact Solution of Fokker-Planck Equation 

Here, we will consider )1(D and )2(D , which are t-
independent, and )1(D  is linear in v  and )2(D  is 
constant. 

It follows that  
 

vD γ−=)1(      ,     CteD =)2(           (19) 

 
The equation for distribution function now reads as 
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With the initial condition 
 

)()0,( vtvw δ==                     (21) 

 
The solution of Eqn. (20) is best found by making a 
Fourier transformation in v , i.e.,  
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We consider to initial condition (Eqn. (21)), where 
the initial condition for the Fourier transformation 
is [7] given as 
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The first order of Eqn. (15) may be solved by the 
methods of characteristics [8]. The solution of Eqn. 
(15) reads as 
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By performing the integral in Eqn. (22), we finally 
get the Gaussian distribution  
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Eqn. (25) is valid for both positive and negative γ . 

5.     Calculation of nth Moment for Stationary 
State 

To obtain the nth moment we have [9] 
 

dvtvwvvM nn

n ),(∫==                  (26) 

 








−=
c

v

c
wst 2

exp
2

2γ
π
γ

                  (27) 

 
Now, for this system we can write  
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Finally, we can calculate the average of kinetic 
energy for this system in stationary state, which is: 
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6.     Conclusion 

In this article, the distribution function is exactly 
calculated in terms of velocity and time for 
Brownian motion by using the known distribution. 
Then, with the help of the distribution function in 
stationary state, we could calculate the average 

value of the kinetic energy. We perceive that the 
odd order of the moment is equal to zero and the 
even order of the moment is limited. In general, the 
Brownian motion has indeed many more 
applications that one expects. Many common 
occurrences which we come across have somehow 
been linked to the characteristics of Brownian 
motion. In particular, the fractal theory and the 
theory of continuum walks are of great 
significance. Brownian noise has long been 
recognized as a form of unavoidable interference in 
the transmission, while the estimation of floods is a 
rather recent discovery that is applicable to the 
environment. In this article, various applications of 
the Brownian motion have been mentioned. It is 
obvious that the Brownian motion is not just a 
physical theory that is solely applied to the world 
of science and technology. Instead, it covers quite a 
number of interesting aspects of life without our 
being aware of its role. Brownian model should 
also be very useful for the uncertainly theory which 
has been developing extensively in recent times. 
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