
African Physical Review (2008) 2 Special Issue (Microelectronics): 0052 104

A 1024 – Bit Implementation of the Faster Montgomery Multiplier Using VHDL

David Narh Amanor
University of Mines and Technology,Tarkwa, Ghana

1. Introduction

This paper presents a 1024-bit implementation of
the recently proposed Faster Montgomery
algorithm for performing modular multiplication.
The object of this paper is to show how complex
microelectronic systems or architectures could be
modelled, simulated, synthesized and emulated on
an FPGA (or fabricated as an ASIC) through the
use of the industry standard language VHDL
(IEEE-1076) as the design entry. The
implementation used higher levels of abstraction to
partition the complex design into subsystems or
components. These components were implemented
as independent functional blocks before being
wired together to construct the Faster Montgomery
architecture. The VHDL implementation was
simulated and synthesized for a Xilinx Virtex
FPGA. But, the code could also be used as the
design entry for an ASIC. The work concludes by
specifying the hardware requirements needed for

the fabrication of the Faster Montgomery
architecture.

2. Main Results

The design capture of the Faster Montgomery
architecture was done using VHDL and the
functionality was verified by simulation in
Modelsim with 1024-bit input variables generated
from a software implementation in JAVA. The
reader is referred to [1], [2] and [3] for a detailed
treatment of the Faster Montgomery architecture.

After the simulation, the synthesis tool
generated the design report for the implemented
architecture. The figures for the minimum clock
period, number of gates, flip-flops, and function
generators are tabulated in Table 1. The percentage
of configurable logic block slices used and the
overall area requirements for the implementation
are available in [3].

Table 1: Design Statistics

No. of Gates No. of Dff or Latches No. of Function Generators
Period and
Frequency

3163 5134 3180
20.398ns(49.024

MHz)

These figures represent the overall hardware
requirements for the complete multiplier including
the block of registers for holding the input data bits.

The minimum clock period and absolute time
for the implemented architecture is as shown in
Table 2. The absolute time is derived from the
minimum clock period by

Absolute time = (Minimum period)*(No. of clock
cycle).
Where, No. of clock cycles = 2*bitlength (n) + 1

The last clock cycle is used to trigger the values
of the sum and carry from the internal registers
inside the loop to the outside for display or further
post processing. In these implementations, post
processing outside the loop is omitted.

Table 2: Absolute Time

Precision Absolute time (ns)

1024 bits 41795.502

3. Conclusion

In this paper, we performed a VHDL
implementation for the Faster Montgomery
multiplier that executes a 1024-bit inputs modular
multiplication in less than 42 micro-seconds. The
paper demonstrates, how a microelectronic system
could be modelled, simulated, and synthesized for a
Xilinx Virtex 2000E target device through the use
of the industry standard language VHDL (IEEE-
1076) as the design entry.

African Physical Review (2008) 2 Special Issue (Microelectronics): 0052 105

References

[1] V. Bunimov and M. Schimmler, “Area and
Time Efficient Modular Multiplication of
Large Integers,” in IEEE 14th International
Conference on Application Specific Systems,
Architectures and Processors, June (2003).

[2] D. Amanor, V. Bunimov, C. Paar, J. Pelzl and
M. Schimmler, “Efficient Hardware
Architectures for Modular Multiplication on
FPGAs”, International Conference on Field
Programmable Logic, Reconfigurable
Computing, and Applications. August 24-28,
(2005), Tampere, Finland.

[3] D. Amanor, “Efficient Hardware
Architectures for Modular Multiplication.”
February (2005)

 http://www.crypto.rub.de/theses.html

