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In this work, we consider the problem of a relativistic spin-s (0, 1/2) particles interacting with a one-dimensional symmetrical scalar
potential using the spin-s Klein Gordon equation. In the scattering case, we construct the formalism of scattering matrix for the spin-s
Klein Gordon relativistic particle in a symmetric potential. Through the scattering matrix, we can derive the phase shift, the scattering
amplitude and consequently reflection and transmission coefficients. Finally, we applied the results obtained to a symmetric scalar

potential; this potential is that of cusp.

1. Introduction

The study of scattering plays a very important role in
modern physics because it offers valuable insights into the
nature of the interactions between particles coming into
contact. This theory finds its origins in theories of
classical and quantum mechanics. In classical physics, the
state of the incoming (free) particle is entirely determined
by its momentum, which is equally true for the outgoing
particle. At the quantum level, it is not generally possible
to predict with certainty which end state will result from a
given collision. We are therefore only trying to predict the
probabilities for a certain final state. The problem is to

establish the relation between the initial state V" and
the final state V. In quantum mechanics, the knowledge

scattering operatoré allows us to determine the final state
W from any initial state " The corresponding

mathematical object is the scattering matrix 3’, the S-

matrix can be defined as the matrix that transforms the
coefficients of the incoming waves into those of the

outgoing waves ¥* =S¥" .
The purpose of this article is to address some scattering
problems of relativistic particles of spin-s(s=0,1/2)

interacting with a symmetric scalar potential. The one-
dimensional scattering problem has been studied in terms
of the S-matrix by a number of authors (see, for example,
[1-6]).

The manuscript has four sections. The second section
introduces the spin-s Klein Gordon formalism for a
charged particle coupled to an electromagnetic field. The
spin-s Klein Gordon equation combines Klein Gordon
and Dirac equations; Klein Gordon equation is used to
describe spin zero particles [7] whereas the Dirac
equation for the spin 1/2 particles in relativistic quantum
mechanics [8, 9]. In the third section, we express the
scattering properties in terms of the S-matrix and
determine the element of scattering matrix by using
C.PT symmetry and the charge conservation. From

scattering matrix, we drew phase shifts, the scattering
amplitude, and reflection and transmission coefficients for
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a symmetrical scalar potential. In the fourth section, the
results and discussion are presented. Finally, in the fifth
section, we present analytical solution of the spin-s Klein-
like many studies [10-15], the exact solutions to spin-s,
the Gordon equation with a Cusp potential in one
dimension, where the Klein Gordon equation are given in
terms of Whittaker's functions. In the scattering case, we
obtain the scattering matrix, phase shifts the scattering
amplitude and hence the reflection and transmission
coefficients for the Cusp potential.

2. The Klein Gordon formalism for spin-s particles

In relativistic quantum mechanics, the Klein Gordon and
the Dirac equation describe the massive particles of spin

0 and1/2, respectively. In presence of an
electromagnetic  field, 4, AU,E the Klein Gordon
equation is given by (i=c=1)
o . Y (a , a)z (=
5+1@A0 —\V—ied| +m ‘Po(r,t):O, @))]
The Dirac equation is given by
(p_eA_m)\Plz(;’t)ZO’ )

Where, 7 = (x,y,z), 4, and A are the four-vector A,.
p—eld= 7/“(1'6# —eAy), and y* (4=0,123 ) are

gamma matrices.
By making the substitution

¥ (7.1)=(p—ed+m)'® (7.1), s=o,% 3)

If we adopt the following notation for any matrix 4

(4] = 1 for s=0 \
|4 for s=1/2, 4)

In this case, Eqns. (1) and (2) can be expressed by a
single relation, called the spin-s Klein Gordon (KG -s)
equation
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{[@Mji(@_@y+mz}w+S6(0F)h}®y(m):0’

)

Here, ® (¥,r) is a wave function with 2%(2s+1)

components and [ is the identity matrix of

2% (25+1)
dimension 2* (2s + 1) and F' is the electromagnetic tensor
F,=0,4,-04,

defined by the components and

oF =O'""FW with " = 5[7/“,}/“1
Fors=0, Eqn (5) reduces to the Klein-Gordon

equation and fors =1/2; we obtain the quadratic form of
Dirac equation (or Klein-Gordon spin-1/2).

Moreover, starting from Eqn. (5), we define a continuity
equation:

0
Zsii o, ©)
t

Where, J! and J. are given by:

s

’)[aq)b(t;’t)j _(a&a(tf,t)J <D51

o L[a .

* T 2im ™
+ 2 40, (7,1) 0 (7.1).

m
And
J = [6.6.0) 50, (7.0)- 60 ()0, (7.0)

2im ®)

+£ 40,(7,1)0,(7,1),

m

Here, 65(}7,”:(@5(}7)0)#(}/0)% denotes the adjoint and

(@,(F.0) = (@) ).

In addition, the scalar product is defined by

@,10)=[8.0.0)(Sver o )

_Kﬁ _ Aojax(f,t)}qz.y(;’t) . )

ot
If we write @ (F,1)= (CD;(?,t),d)j(?,t))T,and choose for
the y* the Weyl representation [16]:

L (0 LY . (0 -¢
Pl oof T e o)

Where, ®_(7,¢) and ®*(F,z) are a wave function with

(10)

2" components, and & = (6,,0,,0,) are the usual Pauli
matrices. With this representation, Eqn. (5) decomposes
into a system of two coupled equations:
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H(7.) 0 o (7,1) o .
() @ () (b
Here,
Hf(?,t):{[ﬁﬂ’erj —(ﬁ—ie;l)zwtmz:llzz.
ot (12)

T 2ise(G ) (E 2 B)

E and B are the electric and magnetic fields. After
giving the elements constituting the Klein Gordon
formalism for spin-s particles, let us now turn to the
construction of the one-dimensional scattering matrix

S

KG-s *

3. Scattering matrix in a symmetrical potential

We consider a relativistic particle of massm, energy E ,
spin- s and charge e in a one-dimensional model moving
under the effect of a symmetrical scalar potential

| x|

A4,(x,t) =V (x) and with infinite behavior V(x) —> 0. 1In

this case, £ and B become:

E=-T05 55, (13)
dx
So, the system of equations (Eqn. (11)) is written as
follows
H’(x,t) d)’(x,t)
s s -0
( 0 H (x,t)J[op;(x,t) ’ (9
Here,
. 0 LA
H (x,t): 1——eV(x) + -m” |1
! ot dx’ : (15)
+2ise(o, ) _dV(x)
dx

As the potential V(x) is time independent, we can write

the solutions of Eqn. (14) under the form
@7 (x,1)=e"™®*(x), consequently, ®*(x) satisfies
s dv .
{DEGI? +2ies(o, | d—(")}qng(x) =0. (16)
X

D}, =<L+(E-eV(x))’-m’is the operator relative to
KG-0.

| x [0

At great distance from the diffuser V(x) — 0, the
asymptotic form of the wave functions @7 L(x) (arrival of
(—o) and CDf,R(x) (arrival of + ), corresponding to

scattering states (E2 -m* > O), can be written [5, 6, 17]
as

1e“+R ™ x——w

oL

s,L

(17)

X — 40’
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o (x) 1e™+R ™ x—+x0 8
sR\X)= ]—‘:.Refﬂq X — —0 ( )
Where, 1, = (lg,lj)r is unit vector of 2*(2s+1)

T are vectors of

s,L°

T

s,R?

R andR

components -

s,R

2*(2s+1) components.

Now, examine the general problem. The stationary wave
function of Eqn. (16) [5, 6] and [17] is written as

ikx

)= O (out,+0)e™ + @7 (in+0)e™ x — +o0
B (Df(in,—oo)e”“ +@; (out,—oo)e’”“ x— - (19)

Where, @7 (in,out,+o) are vectors with 2* components,

and k=vE> —m’.

Let us consider that the incoming and outgoing parts of
the wave function @’ (x) are given by:

{ N (x) =07 (in,—oo)e”“ﬁ(— x)+ @7 (in,+oo)e’”“9(x)

(O3S (x) =07 (out,—oo)e'”“ﬂ(— x)+ @7 (0ut,+oo)e”“0(x)
(20)
By definition the matrix § .. connects @ (x) to ®”(x)
[, 6] by

q);(out""_oo) ‘§11 512 513 514 d);(in,—oo)

@;(out,+oo) §21 §22 §23 §24 (D: in,—oo)

- s s s s (s 21
(O} (out,—oo) Sy Sy Sy Sy || D (zn,+oo)
(D: (OMI,—OO) 541 §42 ‘§43 §44 (D: (in:""oo)

Here 5, are matrices of dimension 2** . In the case of spin
0, the system reduce to

(oo )-(& Eato)

D, (out,—oo) @2)

Where, d)o(in,out,ioo) are coefficients.
Eqns. (21) and (22) can be unified into the following
formula

D, (out) = SA'K(H(IJv (in),
Where, the vectors @ (in,out) and the s KGos

has respectively the dimension 2**' (25 +1).

(23)

the matrix

In fact, matrices s, are not all independent but verify

some constraints derived from general conditions
reflecting the symmetry of the KG-s equation. Consider
C,PT, symmetry is the product of three fundamental

operators: parity P, time reversal 7. and charge

conjugation C_, these operators are characterized by the
following properties:
CC'=PP'=TT =1,

2% (25+1)

(24)

Any operator is determined at a phase factor closure, we
will take afterwards n.=n,=n,=i , so that

=l =l =1

7.
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Firstly, we apply the operator P, which transforms

(x,t)—)(— x,t); by changing x —»—x in Eqn. (14), we

get:
"5 e

Multiplying Eqn. (25) on the left by P, and using Eqn.
(24) , we find

N b

s

(25)

x,1)

=0.
.. I)J (26)
Posing

R R

@7 (x,t)is a solution of Eqn. (14) if P satisfies the
condition

p [H; (x) 0 jP_l _ [H; (()x, )0

0 H(-x1))"

K

P

s

@7

This condition is true if P =iy’ )".
Using Eqn.(19) and Eqn. (27) we move @, (x,t) to
@’ (x, t) and making the following changes:

@7 (out,ioo) > i0: (out,?oo),

(s . - 29
@ (in,%0) <> i®* (in,Foo). (29)
and transporting this last expression in (21), we find
‘in = ‘i44= izz = ‘izza ‘i]Z = ‘i43= 5;31 = 5;245 (30)
Si3 = Sps Sp3 T S35 Sy = S35 Sy = Sy

Let us perform again operation7,, which changes
(x,t)—) (x,—t), by changing? — —¢, and taking the
conjugate complex of Eqn. (14), we find

ALY i

Multiplying (31) on the left by7 , and using (24) we
obtain

(0 T o

we-rete [

®" (x,7) satisfies Eqn. (14), if 7. satisfies the condition:

(€1))

(33)
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Eq. (34) is satisfied by the operator T = i(;/';/‘*)zs .
From (19) and(33), we can go from ® (x,7) to
@7 (x, t) by carrying out the following change:

@ (out, o) > (o, | (CD; (in,iOO))* ,
@’ (inx0) > (o, )" (CD; (out,iw))*.
Finally, let us apply the operator C, , which transforms

(35)

e —> —e ; by changing e — —e , and taking the Hermitian
conjugate of Eqn. (14), we find

o5 i)

Multiplying (36) by (j/o)h from the right and using

(V) =1, we ger

> (x’t)(H:((f’t) H.:(()x,r)J -

Transposing Eqn. (37) and multiplying it from the left by
C,, we obtain

CY[HJ gx’t) H(()mﬂ ccgggg} (7")“j 0, (9)

(36)

37

s

Suppose
oo B ) CS[(Q‘(X’ ’)j (y‘))zrj,

CD:(x,t)

for ®°(x,z) to be a solution to Eqn. (14) , C, must
satisfy the conditions:

CS[H:(()x’t) H,:?x,t)JCS]:(HA(()x,t) H*(()x,t)} (40)

K

(39)

Eqn. (40) is verified by C, =i(72;/°)2".
Using Eqns. (19) and (39), we move from @ (x,7) to
(Df(x,t) through the following changes

@ (out,+) < Fi(o, §* (CDi (in, o0 )) ,
@ (in,+0) & Fi(o, ) (@j (out oo ))
Combining Eqns. (29) , (35), (41) and (2 1) we obtain

(41)

S)y =8y =S, =8, =8y, =8, =85, =5, =0. (42)
In addition, charge conservation gives:
(@ | D) =(D] | D). (43)

The last equation leads to the next relationship

147

(121\ ® (70 )ZJ )S;G—s (121\ ® (70 )ZJ )SKG—.v = Iz“”"(z.wl)’ (44)
= (SA’;,M )], and ® being the tensor product.

By combining the relations deduced from, the invariances
with respect to the operations P ,.7, ,C and the charge

with S'

KG-s

conservation, we obtain the final form of the scattering
matrix of a spin-s (s =0,1/2) relativistic particle in a
symmetrical potential:

r" 0 R 0
< o 1 o R 45
KG-s R; 0 TS, 0 ( )
0 R 0 T
T* and R’ are matrices to (2> x2*) are given by:
ot N O A
]-:+ _[ l F‘J’ ]-1 :( ‘ | J’
o) =00
(40)

t7 and r* are functions generally dependent on the
potential shape.
For s=0 noting that ¢ =r =0,

so T,'=T, and

R, =R, in this case S'KH is symmetrical. For s=1/2
we get (O-s)(Tli'z)(o-s): T, and (Gs)(Rli'z)(Us):Rli/z’

St1, 18 pseudo-symmetrical. Theses latte r properties

SO

are specific to the spinning particle.

Let us now express the matrix S in the partial wave

KG-s
basis, even and odd waves. To illustrate this, we apply the
unitary transformation [5, 6]

ya (in,—oo) L, 0 I, 0 \(@; (in,—oo)
2lin—d| 1|0 I, 0 I, |®(n-x
ylintod)| V2|, 0 —il, 0 | @ (in+oo) “7
7 (in+o0) 0 il, 0 —il, )|® (in+o)
And
flows)) (L 0 L 0 Yo
Cous| 10 L 0 1|6l
;(;(out,+oo) _\/E il, 0 -l 0 CD;(out,+oo)’ (48)
;(:(out,+oo) 0 il 0 —il, (I):(outﬁ—oo)
Where, z7(in ko) and y7(out,+) are vectors with
2%" components. By combining Eqns. (47), (48) and
(21) it comes to:
;(S'(out,+oo) Z;(ln,—oo)
xoutr) |\ | 7 (in=0)
2: out,—o0) || g (ino0) (49)
X! (out,—oo) X! (in,+oo)
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Where, M is the scattering matrix in the partial wave
base. Using Eqn. (44) we obtain

explis®) 0 )}

0 exp(i S| (50)

MKG—.\ = Izl\ ®(

Here 6!, 1=0,1 represents respectively the phase shift
of the event and odd waves, given by:

exp(is! )=, +(~1)(e ) + 0 F -6 (51)
For the wave function, let's combine Eqns. (47)and (48)

with Eqn. (21) and insert the result in Eqn. (19) to obtain
the following:

7 (x)= %[zf('n,—oo)wi’ (W)+ 2 ol W)} (52
With
v (x)=2(ie) " {coS[k | x|+ + %ﬂ, 1=0,1, (53)

Where, ¢ = +(—) according to x>0 (x < 0).

For a particle spreads —oo — +00 , with (19), q)f(in,+oo): 0,

in these conditions 7 (in,+0)=iy’(in,~»). So, Eqn.

(52) becomes

o7, (x)= { \/\/EZ (f’n,—oo)[el‘: + ﬁ’é’k:] . X —> —o0 54)
2. (ln,—oo)[e + (1 + f. )e ] X — +00

with 7 are the scattering amplitude, given by:

- 1( s 5 .
=R S zz(em ~1)=ie” sing!, [=0,1.  (55)

To calculate the reflection and transmission coefficients
we use Eqns. (54) and (55) to get

2
2i8! 2i5!
e +te

>

T =14/ \zzi
(56)
PRl 2

1
R = f P==
A 2

4. Application

We will consider as application of the previous results the
case of a relativistic particle of mass m, energy E , spin-
s and charge e diffused by the Cusp's potential, defined
by [10]:

V@=Ve", (57)
Where, V, and a are real positives. Here, V, represents
the height of the potential and the parameter a defines
the shape of the potential.
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Figure 1: Cusp Potential fora =1, Iy = 2

In the limiting case, a — 0, this potential reduces to a
repulsive delta interaction of strength 24V, [10]. On the
other hand, this potential models an attractive center
where V(x) varies from V(x)—0 for |x|—>oo to
V(x)— ¥, for x—>0. This is an atom model (Coulomb

potential) [10].
The particle is subjected to a time-independence and in
this case the solution of Eqn. (14) is written as

@7 (x,t)= e @7 (x), consequently, 7 (x) satisfies

{D,ﬁglzl, +2ies(o, ) di (Voe’¥ )} ®*(x)=0. (58)
X

Where, Dpj =<4+ (E - eVoe¥)Z —m?*. To decouple the
system Eqn. (58) uses the following transformation

2s
o™ (x)= {%} 2 () V@)=V, (59)
We now obtain
2 . 25 d L} F
[D;}L;lew ilee(UJ d_(VOe ’ )} . (x)z 0. (60)
X

We treat here the case (Ez—m2 >0), corresponding to
scattering states. Since there is an absolute value for
variable X , let us distinguish as usual the two regions
x<0 and x>0.

For x<0, by the change of variable y=2iaV,e"", we
transform the system (Eqn. (60) into

d d . ’ 2 2 25 F
{ydy(ydyJ_[ZaE_;j +ma ]12«\ is(o;) y};@ (x)=0. (61)

We now introduce the change z*(x)=y~/7(y) and we
obtain for f7(y) a Whittaker equation [20, 21]

& 1 iak va-lialE i
dy 4y R

The solution of which is a combination of Whittaker's

Iz‘is(ay“) =0, (62)
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functions

L (COM,. WM
f; (y) = T F (63)
DM ,(»+D, M. (v)
Where, M. . (»), x and g are given by:
M., ()=y""e? F(/2-x £ pu,1520,y), (64)
C=iaE ts, pu=iak.
and | F(1/2-x7+u,1£2u,y) is the confluent

hypergeometric function [20, 21].
As we proceed to the other region x>0, and by

—x/a

making the change y=2iaV,e and replaceing ;(f(x)

by y~“g7(y) , we arrive at an equation similar to Eqn.

(62)

a1 @+1/4—(ia\/E2—m2)z ;sle)” (=0
dy 4y ¥ oy |7 ’
(56)
which also has for solutions
0y (C;MK,,/,(W C:Mk.;,;,(y)] p 6(
DIM, () +DM_ ()] EF

Solutions of Eqns. (63) and (66) can be grouped together

+

into a single equation including solutions relative to x < 0
and x>0

=11 (M0(=x)+ g (10(x), (67)
with y =2iaV,e” and 6(x) is the Heaviside function.
The stationary solution of Eqn. (58) is finally
(o) e
®;(x)=| 1=y (68)
@ (x) o
[ (y)

In addition, constants C; and D;(j =1—> 4) are not

completely independent but are interconnected by the
continuity condition of the wave function and its first
derivative in the vicinity of zero point x=0 or
y=2iaV,=A. To determine these conditions, let us
return to the KG-s Eqn. (58) and examined what happens

near a point x, where the potential V(x) has a jump of

the form

V(x)= Vi (x) for X <X, 69)

V,(x) for x> X,

with

) S for x<x,

X . .
e V.-V (x)|o(x—x,) for x=x,
L) for x>x,

(70)
5(x X, ) is the delta function. Let us integrate Eqn. (58)

on the domain [xo, 0] we get:

D (x;) =D (x,) (71)
dq)j( (x[‘)') _ dq)j( (x(;) + ZISQ[VZ (xg) _ I/I(X[; )](03 )?s (I)T( (.XO)
dx dx
(72)

By applying the continuity conditions given by Eqns. (71)
and (72) to x =0, a simple calculation yields

G =CW + CW, C) =W + CIW .
D} = DW; + DIW;., D = DIW; + DI, (73)
Where, the coefficients are defined as follows:
W e FEY B
(F7F)
_F(E (74)
Wy =y <L EV B
(F)
F*, F], (Ff) and ( 2) are defined by
W yJ =y F (/24 114211, y),
& ,1 .
— 1/ 241
J=pr, 0, =y R/2-pm1-2u ),
1 /1 1
= = Ho—pri | M, ) (75)
( - j W) [2 I j )
1 /1 1 -
=|——=+—= H=—+ut+x | M. .
( ot j M, () [2 u j) )

To calculate the scattering matrix S . » we first look for
the asymptotic behavior of the stationary wave function
d)f“'(x) at very great distance |x|—>oco or again for
y—0. By virtue of the known formulalFl(a,b,O)zl s

V2t ,y)2 [

and M . (y —>0)>y 20], the stationary wave

function is written:

s (&30 . c .
[%](2 ){/1“( Je’“ +/1"( ]e‘“} X —> +00
D D

()=

[%]m){ﬂ“[cJ ke /1"( ] ’“} X — —©
D! ;

Comparing only (76) with (19) we obtain:
Ci+D;
C;-D; ’

(76)

T+Dy

cDj"(in,—oo):ﬂ“[c’ J < (in,1o0) = 4{

C;-D; (77)
Q)f"'(out,—oo)zﬂ_ﬂ(cm} CD? (out +oo) i_ﬂ(c +D; J
C7-Df Ci-Df

Substituting (Df“(out,ioo) and ®*(in,Foo) given by
Eqn. (77) in Eqn. (21) and using Eqns. (73), (45) and
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(46) , we can determine S . for Cusp potential:

O (out+0)) (T 0 R* 0 )0 (in—0)) (T8
O “(out40)| | 0 T 0 R* (D“(m, )
®“out,—0)| |R* 0 T 0 || ©(in+w0)
@ “(out,—0)) 0 R* 0 T q)“(m +00)
Where,
e e S
AR -
" ’Z"(WIZ =W, ), (79)
R | e
R =|" N o
e g : e
r= W)
7 and ¢ are functions of E, ¥, and m .
Finally, let us give the expression of the matrix My,

of the phase shift ( ;"), of the wave function and the

transmission and reflection coefficients in the case of
Cups potential. Using the reasoning previously exposed
for the treatment of a symmetrical potential

V(x) = V(— x) for matrix M Eqn. (50) gives

KG-s?

. exp(i 5 ) 0
Mko s T [2' ®( 0 exp(ié‘j" )} (80)
Where,
explia’ )=+ (e F 4l f -6 81)

To calculate the wave function, substituting Eqn. (81)
into Eqn. (55), the result into Eqn. (54), we find

te \/_;( (zn oo)[e + [ "“] X — —0
O 82
)= {w/_)a (im0 + (14 £7)e*] x = 400 (82)
Here,
A l(e”f" +e )—1 =MWE -1, [ =
o2 (83)
E(ezui“-‘ _ezm‘ ) ﬂJ#VVl;
From Eqn. (56), the reflection and transmission

coefficients are given by

zm‘“ 205!

+e |ﬂ 2”|2

JRICH | |/1 zﬂ|2

ol o
Ri=|/f=

2i50

5. Results and discussion

The resolution of KG-s (Eqn. (60)) interacting with the
Dirac delta potential V(x)=ad(x) (« being a positive
parameter), leads to infinite matrices. This comes from
the term Vz(x) in (60). This term gives a square delta
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5(x)5(x) 5(0)5(x)—) . For this reason the delta

potential is replaced by a regular potential. This potential,
we choose it as that of Cusp. By assimilation of « to

greatness a = [V, exp(—2)dx = 2aV,, going to the limit

a—0, V, — o, the potential of Cusp becomes the delta

potential lim ¥, exp(- 1) — ad(x) [10].

By a passage to the limit ¢ - 0 and V, —» 0, we can

express the wave function, the scattering matrix, the
transmission and reflection coefficients and the phase
shifts for a particle of KG-s interacting with the delta

potential. For the coefficients R and T,
R’ = T =

s

lim T°—0.

a—0",V,—>wo s

lim R{—1,

a—0", V-0

A

Similarly, it is easy to deduce the scattering matrix S,

corresponding to Eqn. (2), which connects the outgoing
wave P, ,(out) to the incident wave ¥ ,(in), by the

relation ‘I’]/z(out) =S D‘I’“Z(in). To calculate S, , we start

by noticing that for |x| — o, A—>0 and
p—eA+m—> p+m. TInserting this into (2), we derive
D, (OMt) p+m 7=, (OMI) and o, (m) = ﬁ ¥, (ll’l)

Substituting these into Eqn. (23) and by a straight forward

calculation one obtain S =S PO

6. Conclusion

Our work has been organized around two major parts. In
the first part, we considered the spin-s (s =0,1/2) Klien

Gordon equation interacting with the one-dimensional
symmetrical scalar potential. The formalism of the

scattering matrix S for a spin-s related particle

KG-s
interacting with a localized electromagnetic field was first
constructed that allowed us to retrieve reflection and
transmission coefficients again. In the second part, as an
application of the results, the case of the Cusp's potential
was investigated in detail and we solved the KG equation
for a spin-s relativistic particle. The solution was given in
analytical form using Whittaker's functions. From the
asymptotic behaviour and by the conditions of continuity

we drew the elements of scattering matrix Sy, , phase
shifts, RS the T!
coefficients.

reflection and transmission
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