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In this work, we consider the problem of a relativistic spin-s (0, 1/2)

 
particles interacting with a one-dimensional symmetrical scalar 

potential using the spin-s Klein Gordon equation. In the scattering case, we construct the formalism of scattering matrix for the spin-s 
Klein Gordon relativistic particle in a symmetric potential. Through the scattering matrix, we can derive the phase shift, the scattering 
amplitude and consequently reflection and transmission coefficients. Finally, we applied the results obtained to a symmetric scalar 
potential; this potential is that of cusp.  
 
 

 

1. Introduction 
 
The study of scattering plays a very important role in 
modern physics because it offers valuable insights into the 
nature of the interactions between particles coming into 
contact. This theory finds its origins in theories of 
classical and quantum mechanics. In classical physics, the 
state of the incoming (free) particle is entirely determined 
by its momentum, which is equally true for the outgoing 
particle. At the quantum level, it is not generally possible 
to predict with certainty which end state will result from a 
given collision. We are therefore only trying to predict the 
probabilities for a certain final state. The problem is to 

establish the relation between the initial state in  and 
the final state out . In quantum mechanics, the knowledge 

scattering operator Ŝ allows us to determine the final state 
out  from any initial state in . The corresponding 

mathematical object is the scattering matrix ,Ŝ  the S-
matrix can be defined as the matrix that transforms the 
coefficients of the incoming waves into those of the 

outgoing waves inout  Ŝ . 
    The purpose of this article is to address some scattering 
problems of relativistic particles of spin-s )2/1,0( s  

interacting with a symmetric scalar potential. The one-
dimensional scattering problem has been studied in terms 
of the S-matrix by a number of authors (see, for example, 
[1-6]). 
    The manuscript has four sections. The second section 
introduces the spin-s Klein Gordon formalism for a 
charged particle coupled to an electromagnetic field. The 
spin-s Klein Gordon equation combines Klein Gordon 
and Dirac equations; Klein Gordon equation is used to 
describe spin zero particles [7] whereas the Dirac 
equation for the spin 1/2 particles in relativistic quantum 
mechanics [8, 9]. In the third section, we express the 
scattering properties in terms of the S-matrix and 
determine the element of scattering matrix by using 

sss TPC  symmetry and the charge conservation. From 

scattering matrix, we drew phase shifts, the scattering 
amplitude, and reflection and transmission coefficients for 

a symmetrical scalar potential. In the fourth section, the 
results and discussion are presented. Finally, in the fifth 
section, we present analytical solution of the spin-s Klein-  
like many studies [10-15], the exact solutions to spin-s, 
the Gordon equation with a Cusp potential in one 
dimension, where the Klein Gordon equation are given in 
terms of Whittaker's functions. In the scattering case, we 
obtain the scattering matrix, phase shifts the scattering 
amplitude and hence the reflection and transmission 
coefficients for the Cusp potential. 
 
2. The Klein Gordon formalism for spin-s particles 
 
In relativistic quantum mechanics, the Klein Gordon and 
the Dirac equation describe the massive particles of spin 
0  and 2/1 , respectively. In presence of an 

electromagnetic field,  AAA


,0  the Klein Gordon 

equation is given by ( 1 c ) 
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The Dirac equation is given by 

    ,0,2/1  trmAep
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 (2) 

Where, ),,( zyxr 


, 
0A  and A


 are the four-vector A . 

 ,
 eAiAep   and   ( 3,2,1,0  ) are 

gamma matrices. 
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If we adopt the following notation for any matrix A  
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In this case, Eqns.  1  and  2  can be expressed by a 

single relation, called the spin-s Klein Gordon  s-KG  

equation 
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Here,  trs ,


  is a wave function with  1222 ss  

components and 
)12(22 ssI  is the identity matrix of 

dimension  1222 ss  and F  is the electromagnetic tensor 

defined by the components  AAF   and 


 FF   with  .,2

  i   

    For 0s , Eqn.  5  reduces to the Klein-Gordon 

equation and for 2/1s ; we obtain the quadratic form of 
Dirac equation (or Klein-Gordon spin-1/2). 
Moreover, starting from Eqn. (5), we define a continuity 
equation:  
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Where, 0

sJ  and sJ
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 are given by: 
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And  
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In addition, the scalar product is defined by  
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If we write        ,,,,,
T

sss trtrtr
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,
0

0
    ,

0

0

2

20








 














 




I

I

 

 
(10) 

Where,  trs ,
  and  trs ,

   are a wave function with 
s22  components, and  321 ,,  


 are the usual Pauli 

matrices. With this representation, Eqn.  5  decomposes 

into a system of two coupled equations: 
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Here, 
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E


 and B


 are the electric and magnetic fields. After 
giving the elements constituting the Klein Gordon 
formalism for spin-s particles, let us now turn to the 
construction of the one-dimensional scattering matrix 

sKGS 
ˆ . 

 
3. Scattering matrix in a symmetrical potential 
 
We consider a relativistic particle of mass m , energy E , 
spin- s  and charge e  in a one-dimensional model moving 
under the effect of a symmetrical scalar potential 

)(),(0 xVtxA   and with infinite behavior   0
|| 


x

xV . In 

this case, E


 and B


 become: 
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So, the system of equations (Eqn. (11)) is written as 
follows 
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Here,  
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As the potential  xV  is time independent, we can write 

the solutions of Eqn.  14  under the form 
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KG  is the operator relative to 

KG-0. 

At great distance from the diffuser   0
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asymptotic form of the wave functions  xLs



,  (arrival of   

(  ) and  xRs



,  (arrival of  ), corresponding to 

scattering states   ,022  mE  can be written [5, 6, 17] 

as 
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Where,  Tsss

 1,11  is unit vector of  1222 ss  

components ,, LsT  ,, RsT  LsR , and RsR ,  are vectors of 

 1222 ss  components. 

Now, examine the general problem. The stationary wave 
function of Eqn. )16(  [5, 6] and [17] is written as 

 

     
   












xeoutein

xeineout
x

ikx

s

ikx

s

ikx

s

ikx

s

s   ,,

  ,,






 

 (19) 

Where, ),,(  outins

  are vectors with s22  components, 

and .22 mEk   
Let us consider that the incoming and outgoing parts of 
the wave function  xs

  are given by: 
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By definition the matrix sKGS 
ˆ  connects  xout

s  to  xin

s   

[5, 6] by 
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Here ijŝ  are matrices of dimension s22 . In the case of spin

0 , the system reduce to 
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Where,   ,,0 outin  are coefficients. 

    Eqns.  21  and  22  can be unified into the following 

formula 
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In fact, matrices 
ijŝ  are not all independent but verify 

some constraints derived from general conditions 
reflecting the symmetry of the KG-s equation. Consider 

sss TPC  symmetry is the product of three fundamental 

operators: parity
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conjugation
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following properties: 
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Multiplying Eqn. )25(  on the left by ,sP  and using Eqn.

 24  , we find 

 
 

 
  .0

,

,

,0

0, 1 






























tx

tx
PP

txH

txH
P

s

s

ss

s

s

s  (26) 

Posing  

     
  ,

,

,
,, 
















tx

tx
PtxPtx

s

s

sss

P

s
s  (27) 

 txsP

s , is a solution of Eqn.  14  if 
sP  satisfies the 

condition 
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This condition is true if   .
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and transporting this last expression in )21( , we find 
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Let us perform again operation sT , which changes  

   ;,, txtx   by changing tt  , and taking the 

conjugate complex of Eqn. (14), we find 
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Multiplying  31  on the left by
sT  , and using  24  we 

obtain 
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Putting 
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 txsT

s ,  satisfies Eqn.  ,14  if sT  satisfies the condition: 
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(34) 

Eq.  34  is satisfied by the operator   s

s iT
231 . 

    From  19  and  33 , we can go from  txs ,  to 

 txT

s ,  by carrying out the following change: 
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Finally, let us apply the operator sC  , which transforms 

ee   ; by changing ee   , and taking the Hermitian 
conjugate of Eqn. ),14(  we find 
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Multiplying  36  by   s20  from the right and using 

     ,122

220
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
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sI  we get 
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Transposing Eqn. )37( and multiplying it from the left by 

,sC  we obtain 
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Suppose 
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for  txC

s ,  to be a solution to Eqn.  14  , 
sC  must 

satisfy the conditions: 
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Eqn. )40(  is verified by   .
202 s

s iC   

Using Eqns.  19  and  39 , we move from  txs ,  to 

 txC

s ,  through the following changes 
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Combining Eqns. )29( , )35( , )41(  and  21   we obtain 

 
.4334322341142112 0 ssssssss  (42) 

In addition, charge conservation gives: 
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The last equation leads to the next relationship 
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with   ,ˆˆ †
T

sKGsKG SS 
   and   being the tensor product. 

By combining the relations deduced from, the invariances 

with respect to the operations sP ,. sT , sC  and the charge 

conservation, we obtain the final form of the scattering 
matrix of a spin-s )2/1,0( s  relativistic particle in a 

symmetrical potential: 
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

sT  and 

sR  are matrices to  ss 22 22   are given by:  
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 (46) 


st  and 

sr  are functions generally dependent on the 

potential shape. 
For 0s  noting that 

st ,0
sr  so   00 TT  and 

,00

  RR  in this case 0
ˆ

KGS  is symmetrical. For 2/1s  

we get     
32/13  T 

2/1T  and     ,2/132/13

RR    so 

2/1
ˆ

KGS  is pseudo-symmetrical. Theses latte r properties 

are specific to the spinning particle. 

    Let us now express the matrix sKGS 
ˆ  in the partial wave 

basis, even and odd waves. To illustrate this, we apply the 
unitary transformation [5, 6] 
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And  
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(48) 

Where,   ,ins

   and   ,outs

  are vectors with 
s22  components. By combining Eqns. )47( , )48(  and 

)21(  it comes to: 
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(49) 



The African Review of Physics (2019) 14 :0020 
 

148 
 

Where, 
sKG

M


 is the scattering matrix in the partial wave 

base. Using Eqn.  44  we obtain 
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Here ,l

s  1,0l   represents respectively the phase shift 

of the event and odd waves, given by: 
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For the wave function, let's combine Eqns.  47 and  48  

with Eqn. (21) and insert the result in Eqn. )19( to obtain 

the following: 
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Where,    according to 0x   .0x   
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with 

sf  are the scattering amplitude, given by: 
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To calculate the reflection and transmission coefficients 
we use Eqns. )54(  and )55( to get 
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4. Application 
 
We will consider as application of the previous results the 
case of a relativistic particle of mass m , energy E , spin-
s  and charge e  diffused by the Cusp's potential, defined 
by [10]: 

,)( 0
a

x

eVxV   (57) 

Where, 
0V  and a  are real positives. Here,

0V  represents 

the height of the potential and the parameter a  defines 
the shape of the potential. 

 
 
In the limiting case, 0a , this potential reduces to a 
repulsive delta interaction of strength 

02aV [10]. On the 

other hand, this potential models an attractive center 

where  xV  varies from   0xV  for x  to 

  0VxV    for x 0 . This is an atom model (Coulomb 

potential) [10]. 
    The particle is subjected to a time-independence and in 
this case the solution of Eqn.  14  is written as
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Where,   .2
2
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KG    To decouple the 

system Eqn. )58(  uses the following transformation 
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We now obtain 
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We treat here the case  022  mE , corresponding to 

scattering states. Since there is an absolute value for 
variable x , let us distinguish as usual the two regions 

0x  and 0x . 

For ,0x  by the change of variable ,2 /

0

axeiaVy   we 

transform the system (Eqn. (60) into 
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We now introduce the change   )(2
1

yfyx ss

   and we 

obtain for )(yf s

  a Whittaker equation [20, 21]   
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The solution of which is a combination of Whittaker's 
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functions 
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Where, ),(
,

yM
s    

s  and   are given by: 
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and ),21,2/1(11 yF s      is the confluent 

hypergeometric function [20, 21]. 
    As we proceed to the other region ,0x  and by 

making the change axeiaVy /

02   and replaceing  xs

  

by )(2
1

ygy s

  , we arrive at an equation similar to Eqn.

 62  
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(56) 

which also has for solutions 
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Solutions of Eqns.  63  and (66) can be grouped together 

into a single equation including solutions relative to 0x  
and 0x   
 

),()()()()( xygxyfy sss     (67) 

with a
x

eiaVy
||

02   and )(x  is the Heaviside function.  

The stationary solution of Eqn. (58) is finally 
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    In addition, constants 

jC  and 

jD ( 41 j ) are not 

completely independent but are interconnected by the 
continuity condition of the wave function and its first 
derivative in the vicinity of zero point 0x  or 

.2 0  iaVy  To determine these conditions, let us 

return to the KG-s  Eqn.  58  and examined what happens 

near a point 0x  where the potential   xV  has a jump of 

the form 
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(70) 
 0xx   is the delta function. Let us integrate Eqn.  58  

on the domain   
00 , xx  we get: 
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By applying the continuity conditions given by Eqns. (71) 
and (72) to ,0x   a simple calculation yields 
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(73) 

 
Where, the coefficients are defined as follows: 
 

 

 
.

)()(

  ,
)()(

11

2112
3214

11

1221
3412




















FF

FFFF
WW

FF

FFFF
WW













 (74) 

,1

F  ,2

F   1F  and  

2F  are defined by 
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To calculate the scattering matrix c

sKGS 
ˆ , we first look for 

the asymptotic behavior of the stationary wave function 
 xc

s

,  at very great distance || x  or again for

0y . By virtue of the known formula   10,,11 baF  , 

and   2/2/1

,
0 yeyyM
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 [20], the stationary wave 

function is written: 
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Comparing only  76  with )19(  we obtain: 
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Substituting    ,, outc

s  and    ,, inc

s  given by 

Eqn.  77  in Eqn.  21  and using Eqns.    45,73  and 
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 46 , we can determine sKGS 
ˆ  for Cusp potential: 
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(78) 

Where, 
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c

st
,  and c

sr
,  are functions of E , 0V  and m . 

    Finally, let us give the expression of the matrix c

sKGM   , 

of the phase shift  ,,cl

s  of the wave function and the 

transmission and reflection coefficients in the case of 
Cups potential. Using the reasoning previously exposed 
for the treatment of a symmetrical potential  
   .xVxV   for matrix sKGM  , Eqn. )50(  gives 
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Where, 
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To calculate the wave function, substituting Eqn.  81  

into Eqn.  ,55  the result into Eqn.  ,54  we find 
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Here, 
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From Eqn.  ,56  the reflection and transmission 

coefficients are given by 
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5. Results and discussion 
 
The resolution of KG-s (Eqn. (60)) interacting with the 
Dirac delta potential  )()( xxV   ( being a positive 

parameter), leads to infinite matrices. This comes from 
the term  xV 2  in  60 . This term gives a square delta  

        .0  xxx   For this reason the delta 

potential is replaced by a regular potential. This potential, 
we choose it as that of Cusp. By assimilation of  to 

greatness ,2)exp( 0
||

0 aVdxV a
x 



  going to the limit 

,0a  ,0 V  the potential of Cusp becomes the delta 

potential )()exp(lim ||
0,0 0

xV a
x

Va


 
 [10]. 

    By a passage to the limit 0a  and ,0 V  we can 

express the wave function, the scattering matrix, the 
transmission and reflection coefficients and the phase 
shifts for a particle of KG-s interacting with the delta 

potential. For the coefficients sR  and sT , 
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Similarly, it is easy to deduce the scattering matrix DŜ   

corresponding to Eqn. (2), which connects the outgoing 
wave  out2/1   to the incident wave  in2/1 , by the 

relation    .ˆ
2/12/1 inSout D  To calculate DŜ , we start 

by noticing that for ,x  0A  and 

.mpmAep    Inserting this into  2 , we derive

   outout mp 2/1
1

2/1    and    .2/1
1

2/1 inin mp    

Substituting these into Eqn. (23) and by a straight forward 

calculation one obtain .ˆˆ
2/1 KGD SS   

 
6. Conclusion 
 
Our work has been organized around two major parts. In 
the first part, we considered the spin-s )2/1,0( s  Klien 

Gordon equation interacting with the one-dimensional 
symmetrical scalar potential. The formalism of the 

scattering matrix sKGS 
ˆ  for a spin-s related particle 

interacting with a localized electromagnetic field was first 
constructed that allowed us to retrieve reflection and 
transmission coefficients again. In the second part, as an 
application of the results, the case of the Cusp's potential 
was investigated in detail and we solved the KG equation 
for a spin-s relativistic particle. The solution was given in 
analytical form using Whittaker's functions. From the 
asymptotic behaviour and by the conditions of continuity 

we drew the elements of scattering matrix ,ˆ c

sKGS   phase 

shifts, reflection c

sR  and the transmission c

sT  

coefficients. 
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