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Modified Schrodinger equation plays a fundamental role for describing the behavior of a particle at microscopic scale. In this context, we have studied 
the non-relativistic energy spectra of the modified quantum mechanical gravitational potential plus the harmonic oscillator (MQMGHO) potential 
using the generalized Bopp’s shift method and standard perturbation theory within the framework of non-commutative 3-dimensional phase space 
(NC: 3D-RSP) symmetries. Furthermore, we have shown that the modified Hamiltonian operator containing a perturbed Coulomb potential, which 
physically means the global Hamiltonian of MQMGHO potential, can be described as Hydrogenic atoms interacting with strong potential composed of 
quantum mechanical gravitational potential plus the harmonic oscillator (QMGHO) potential and an auxiliary part. The bound state energy 

eigenvalues, in terms of discreet atomic quantum numbers ( j ,  ln, and m ), four infinitesimal parameters   ,,,  induced by position-

position and phase-phase non-commutativity, in addition to the dimensional parameters of MQMGHO potential and the corresponding non-
commutative Hamiltonian operator were obtained for Hydrogenic atoms. Moreover, we have shown that, the total complete degeneracy of energy 

levels of studied potential were changed and replaced by new values
22n .  

 
 

1. Introduction 

 Recently, there has been a great interest to study physical and 
chemical phenomena in the generalized quantum mechanics 
(non-commutative quantum mechanics (NCQM)). There has 
been an increasing interest in finding the analytical solutions that 
play a crucial role for getting complete physical and chemical 
information about quantum mechanical systems. In the non-
relativistic case the exact bound state solutions of the modified 
Schrödinger equation (MSE) are only possible for some 
potentials of chemical and physical interest. In the symmetries of 
NCQM, which was made known firstly by Heisenberg and was 
formalized by Snyder at 1947, was suggested by recent results in 
string theory [1-5]. In this work, our aim is to solve the MSE for 
the modified quantum mechanical gravitational (MQMG) 
potential  plus the modified harmonic oscillator (MHO) potential  
via the generalized Bopp’s shift method and standard 
perturbation theory in the case of the symmetries of  NCQM. The 
MQMGHO potential takes the form: 
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    In 2005, B. Santos et al. [6] have studied the motion of a 
particle in a gravitational field using the QMGP without the 
exponential term and in 2014, Ita et al [7] have applied the NU 
method to 
QMGHO potential, where they obtained bound state s-wave 
solution of the SE equation. Recently, H. Louis et al. [8] solved 
the SE for QMGHO potential by WKB approximation method. It 
is known that the QMGP could be used to calculate the energy of 
a body falling under gravity from the quantum mechanical point  

 
 
of view [7-8]. The modified harmonic oscillator potential plays 
a basic role in chemical and molecular physics. We want to 
extend, this study [7-8] to the case of NCQM symmetries. The 
NCQM structure based to NC canonical commutations relations 
in both Schrödinger and Heisenberg pictures (SP and HP), 
respectively, as follows (Throughout this paper, the natural 
units 1 c  will be used) [9-23]: 
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Where, the non-commutativity parameters  ij  and ij  are 

real-values and elements of the antisymmetric constant matrix 

with a dimension of  2ix and  2ip , respectively and eff  is 

the effective Planck constant. However, the new operators 

    tpxt iI ˆˆˆ    in HP are depending to the corresponding 

new operators  ii px ˆˆˆ   in SP from the following 

projections relations:  

       )ˆexp()ˆexp( 00 ttHittHit mgomgo   
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The dynamics of new systems 
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 are described from the 

following motion equations in NCQM 
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The two operators mgoĤ and mgoncH 
ˆ represent the ordinary and 

quantum Hamiltonian operators for QMGHO potential and 
MQMGHO potential in the QM and NCQM, respectively. The 

very small two parameters   and 


  (compared to the 

energy) are elements of two antisymmetric real matrixes and    

denote to the new star product, which is generalized between two 

arbitrary functions    pxfg ,  to the new form 

      pxgfpxgpxf ,ˆ,ˆˆˆ,ˆˆ   in ordinary 3-dimensional space-

phase [17-23]:  
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Where,   
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px ,, . The effects of (space-space) 

and (phase-phase) noncommutativity properties, respectively 
induce the second and the third terms in the above equation. The 
organization scheme of the recent work is given as follows. The 
ordinary SE with QGMHO potential will be reviewed in Sec. 2 
based on [7-8]. Sec.3 is devoted to studying the MSE by applying 
the generalized Bopp's shift method for MQGHO potential. In the 
next subsection, by applying standard perturbation theory to find 

the quantum spectrum of thn  excited levels for spin-orbital 
interaction in the framework of the global group (NC-3D: RSP) 
and then, we derive the magnetic spectrum for MQMGHOP. In 
the Sec. 4, we resume the global spectrum and corresponding NC 
Hamiltonian operator for MQMGHO potential. Finally, the short 
concluding remarks have been presented in the Sec.5. 

2. Overview of the eigenfunctions and the energy 
eigenvalues for QMGHO potential 

 

  In this section, we are going to study some basic properties of 
the time-independent Schrödinger equation for a quantum 
mechanical gravitational potential plus the harmonic oscillator 
potential (QMGHO) of the form [7-8]: 
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Where, z  is the displacement, k is momentum, m is the mass, 

g  is gravitational acceleration,   is an adjustable parameter, 

  is the reduced mass,    is the angular frequency, 

and mg , k and 0V . If we insert this potential 

into the time-independent SE, the radial part reads [7] 
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The radial parts of the wave functions are shown as a function 
of the Laguerre polynomial in terms of some parameters [7] as 
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  ,,r  and the energy nE  of the potential in Eqn. (6) are 

given by 
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and [7-8] by 
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 SOLUTION OF THE MODIFIED SCHRÖDINGER 
EQUATION 

 
2.1 Review of generalized Bopp’s shift method  

 

In this sub-section, we shall give an overview or a brief 
preliminary for MQMGHO potential in (NC: 3D-RSP) 
symmetries. To perform this task the physical form of MSE, it 
is necessary to replace ordinary three-dimensional Hamiltonian 
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operators  ii xpH ,ˆ , ordinary complex wave function 








r  

and ordinary energy nlE  by new three Hamiltonian 

operators  iimgonc xpH ˆ,ˆˆ
 , new complex wave function  r


  

and new values mgoncE  , respectively. In addition to replace the 

ordinary old product by the Moyal–Weyl product ( - product), 
which allows us to construct the MSE in (NC-3D: RSP) 
symmetries [18-26] as  
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    The Bopp’s shift method employed in the solutions enables us 
to explore an effective way of obtaining the modified potential in 
NCQM, which is based on the following new commutators [24-
34]: 
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It is well known that, in (NC: 3D-RSP), the new generalized 

positions and momentum coordinates   ii px ˆ,ˆ  can be obtained 

by the carrying out non-minimal substitution [19-24] as 
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Where,  ii px , are corresponding usual generalized positions 

and momentum coordinates in CQM obeys the usual 

commutation relations  ji px ,       ijji itptx , . The above 

equation allows us to obtain the two operators 2r̂  and
2p̂   in 

(NC-3D: RSP) [25-30] as 
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The new operator of Hamiltonian  iimgonc xpH ˆ,ˆ  can be 
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Now, we want to find the MQMGHO potential  rVmgo ˆ  which 

can found from the relation given below as 
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By making the substitution above equation into Eqn. (17), we 
find the global our working new Hamiltonian operator 

 rH mgo ˆ-nc  satisfies the equation in (NC: 3D-RSP) 

symmetries: 
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Where, the operator  xpH mgo ,  is just the ordinary 

Hamiltonian operator for MGHO potential in commutative 
space:   
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Whereas, the rest part  rH mgo-per  is proportional with two 

infinitesimals parameters (  and ):  
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the Hamiltonian operator containing a perturbed Columbic 
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Hamiltonian  rH mgonc ˆ  can be describe as Hydrogenic atom 

interacting with strong potential composed with quantum 
mechanical gravitational potential plus the harmonic oscillator 
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1  V . Thus, 

we can consider  rH mgo-per as a perturbation terms compared 

with the principal Hamiltonian operator  xpH mgo ,   in (NC: 

3D-RSP) symmetries. 
 
3.2 The modified spin-orbit spectrum for MQMGHO potential in 

(NC: 3D- RSP) symmetries 
 
In this sub-section, we want to see the physical contribution of 

the generated Hamiltonian operator  rH mgo-per  and its effect 

on the principal energy nE . To achieve this important objective, 

as a first step, we follow the same strategy that we saw in our 
previous works [31-38]; under such particular choice, one can 
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Here 
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  is a new constant, which plays the role of the 

fine structure constant. Furthermore, the above perturbative terms 

 rH mgo-per  can be rewritten to the following new form as 

  202
0

2

222

1

2
,, G

r

V
VrH mgoso















 

 
  (23)  

Where,
222

2


 SLJG .This operator relates the coupling 

between spin 


S  and orbital momentum


SL .  The set 

(  ,, rH mgoso , 2J , 2L , 2S and )zJ  forms a complete set 

of conserved physics quantities and for 


 2/1S , the 
eigenvalues of the spin orbit coupling operator are 















  4

3
)1()1

2

1
(

2

1
2
1 llllk  corresponding 

to 2/1 lj  (spin up) and 2/1 lj  (spin down), 

respectively, then, one can form a diagonal  33  matrix, 

with diagonal elements are  
11mgosoH  ,  

22mgosoH   and 

 
33mgosoH   for MQMGHO potential in (NC: 3D-RSP) 
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 (24)   

    After a detailed calculation one can show that the new radial 

function  rRnl  satisfying the following differential equation 

for MQMGHO potential: 
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     The two terms which composed the expression of 

 rH mgo-per  are proportional to two infinitesimals parameters 

(  and ). Thus, in what follows, we proceed to solve the 
modified radial part of the MSE that is, Eqn. (24) by applying 
standard perturbation theory for their exact solutions at first order 

of two parameters   and . After this sub-section, we study the 

fundamentally rich systems of (NC: 3D- RSP), which will be 
used to generate the energy of studied potential. 

3.3 The exact modified spin-orbital spectrum for MQMGHO 
potential in global (NC: 3D- RSP) symmetries 

The purpose here is to give a complete prescription for 

determine the energy level of thn  excited states, of Hydrogenic 
atoms with MQMGHO potential, we first find the corrections 
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mgoE -u  and  mgoE -d  which have 2/1 lj  (spin up) 

and 2/1 lj  (spin down), respectively, at first order of two 

parameters   and   obtained by applying the standard 
perturbation theory to find the following: 
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Now, we can write the above two equations to the new form: 
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Moreover, the expressions of the three factors  11 ,, nT , 

 12 ,, nT  and  13 ,, nT are given by: 

   

        

        22exp
2

,,

,,
2

1
 22exp

2

1
,,

2

11
11

0

0
12

13
2

0
22

11
12

0

2
0

2
11

drrLrr
V

nT

nTVdrrLrrVnT

n

n























 






 










          (28)

For the ground state, we have   12 10  rLn  . It is convenient 

to apply the following special integral [39]: 
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With conditions ( 0Re  , 0Re   and 0p ) and 









p


 the 

ordinary Gamma function.  After straightforward calculations, we 
can obtain the explicit results as follows 
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For the first excited state, we 

have   122 111   rrLn . Thus, the three 

factors  11 ,,1 nT ,  12 ,,1 nT  and  13 ,,1 nT  are 

given by 
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Evaluating the integral in Eqn. (31), applies the special integration, which given by Eqn. (29), we obtain the results: 
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 (32)

    This allows us to obtain the exact modifications 

 1-u ,,1 nE mgo   and   1-d ,,1 nE mgo   of the first 

excited state, and in the same way we find the exact 

modifications  lnE mgo ,,,-u    and   lnE mgo ,,,-d   for 

thn  excited states of Hydrogenic atoms with MQMGHO 
potential in global quantum group symmetry (NC: 3D-RSP).  

3.4 The exact modified magnetic spectrum for MQMGHO 
potential in global (NC: 3D- RSP) symmetries 
 

Further to previously obtained important results we now consider 
another physically meaningful phenomena produced by the effect 
of MQMGHO potential related to the influence of an external 

uniform magnetic field B


, to avoid the repetition in the 
theoretical calculations, it’s sufficient to apply the following 
replacements: 
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Here   and   are two infinitesimal real proportional constants, 

and we choose the arbitrary external magnetic field B


 parallel to 
the (Oz) axis, which allow us to introduce the new modified 

magnetic Hamiltonian mgmH   in (NC: 3D-RSP) symmetries as  
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Here, BSz



 denotes the Zeeman effect, 

whereas zz JB 





mod is the new Zeeman effect. To obtain 

the exact NC magnetic modifications of energy for ground 

state, first excited state and thn  excited states of Hydrogenic 

atoms  1,,0,0  mnE mgomag , 

 1,,1,0,1  mnE mgomag  and  1,,, mnE mgomag  we 

just replace k  and   in the Eq. (27) by the following 

parameters: m  and  , respectively, as 
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(35) 

We have lml  , which allows us to fix ( 12 l ) values 
for discreet numbers m .  

3. Results 
 

In this section, we discuss several results obtained in the 
previous section, our goal from this work is on focusing around 

the modified eigen-energies  (  1gou- nc ,,,,,0 sljnE m  ,  

 1god- nc ,,,,,0 sljnE m  ),  (  1gou- nc ,,,,,1 sljnE m  , 

 1god- nc ,,,,,1 sljnE m  ) and (  1gou- nc ,,,,, sljnE m , 

 1god- nc ,,,,, sljnE m ) of a Hydrogenic atoms with spin 



 2/1S  for MSE with MQMGHO potential are obtained in 
this paper on based on our original results presented by Eqns. 

(27), (31), (32) and (35), in addition to the ordinary energy nE
 

for QMGHO potential, which is presented by Eqn. (10): 
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This is the main goal of this work. It’s clear, that the obtained 
eigenvalues of energies are reals and then the non-

commutative diagonal Hamiltonian mgoncH    is Hermitian, 

furthermore it’s possible to write the following three 

elements  
11mgoncH  ,  

22mgoncH   and  
33mgoncH   as 

follows: 

 

 
  mgomgonc

dmgo
nc

mgonc

umgo
nc

mgonc

HH

HH

HH



















33

int22

int11

2

2





              (40) 

Where, 

   
    )(

)( 

22

modint

modint

rfkrVH

rfkrVH

LL

zmgodmgo

zmgoumgo

nc
























(41) 

 

Thus, the ordinary kinetic term for QMGHO potential 
2


  

and ordinary interaction  rVV 00    

22
0

2

2

1
rV 





    are replaced by a new modified form of 

a kinetic term 
2
nc

 (which generate the dynamic of the physical 

system) and two modified interactions to the new form 

( umgoH int  and dmgoH int ). On the other hand, it is evident to 

consider the quantum number m  takes ( 12 l ) values and we 

have also two values for
2

1
 lj , thus every state in usually 

three dimensional space of energy for MQMGHO potential will 

be  122 l sub-states. To obtain the total complete 

degeneracy of energy level of the MQMGHO potential in NC 
three-dimension spaces-phases, we need to sum for all allowed 
values of l . Total degeneracy is thus, 

  2
1

0

2122 nl
n

l






                           (42) 

Note that the obtained new energy eigenvalues 

(  1gou- nc ,,,,, sljnE m ,  1god- nc ,,,,, sljnE m ) now 
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depend to new discrete atomic quantum numbers  sljn ,,,  

and m  in addition to the parameter    of the potential. It is 

pertinent to note that when the atoms have


 2/1S , the total 

operator can be obtains from the interval sljsl  , 

which allow us to obtaining the eigenvalues of the operator 







 

222

SLJ  as   )1()1()1(,,  sslljjsljk  and 

then the nonrelativistic energy spectrum 

 1- nc ,,,,, sljnE mgo  reads: 

           




















  1312111- nc ,,

22
,,,,,,2,,,,, 





 nTBmknTnTBmslkNEsljnE nmgo  (43)

If 0V in Eq. (19), the new Hamiltonian operator 

 rH mgo ˆ-nc turns back into the modified harmonic oscillator 

Hamiltonian operator in (NC: 3D- RSP) symmetries and the 
energy equation (43) yields the energy eigenvalues for the 
modified harmonic oscillator potential. If we 

consider    0,0,   , we recover the results of 

commutative space of refs [7-8] obtained for the quantum 
mechanical gravitational potential plus the harmonic oscillator 
potential 

5. Conclusion 

In this paper, we have studied the bound state solution of the 
modified Schrödinger equation for modified quantum 
mechanical gravitational potential plus the modified harmonic 
oscillator potential via the generalized Bopp’s shift method and 
standard perturbation theory in (NC: 3D-RSP) symmetries. We 
resume the main obtained results: 
 
 We have seen that the modified Hamiltonian operator 

containing a perturbed Columbic potential, this means 
physically the global Hamiltonian can be described 
Hydrogenic atoms interacted with strong potential 
composed with quantum mechanical gravitational 
potential plus the harmonic oscillator potential and an 
auxiliary part. 

 Ordinary interaction (   22
0

2
00 2

1
rVrVV 





   ) were 

replaced by new modified interactions umgoH int  

and dmgoH int  for Hydrogenic atoms, 

 The ordinary kinetic term (
2


 ) modified to the 

new form 



 22






 LLnc  for MQGHO 

potential, 

 The modified eigenenergies (  1gou- nc ,,,,,0 sljnE m  , 

 1god- nc ,,,,,0 sljnE m  ),  (  1gou- nc ,,,,,1 sljnE m  , 

 1god- nc ,,,,,1 sljnE m  )  and (  1gou- nc ,,,,, sljnE m , 

 1god- nc ,,,,, sljnE m ) of a Hydrogenic atoms with 

spin 


 2/1S  for MSE with MQMGHO potential are 
obtained. 

Through this research, we can conclude the generalized Bopp’s 
shift method can be applied to the investigation of other 
physical systems in NCQM symmetries. 
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