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Capture cross sections of electron by proton in collision with ground state hydrogen atom into 1s, 2s, and 2p states are calculated in the 
framework of an impact parameter representation. The calculations are performed within the solution of the coupled differential equations 
arising from a two-state atomic-orbital close-coupling approach, in the impact energy range from 4 keV to 200 keV. The electronic wave 
function is expanded in terms of atomic orbitals in the fields of the target nucleus and the projectile with appropriate plane-wave electron 
translational factors. The agreement of the calculated cross sections with the available previous theoretical and experimental results is 
satisfactory.   

 

1. Introduction 

The scattering of protons from ground state hydrogen 
atoms has often been used as a benchmark system for 
theoretical investigations [1–7] and experimental 
measurements [8-13]. Cross sections due to excitation, 
ionization, and capture processes for this collisional system 
have many applications in plasma physics. Charge transfer 
theory for ion-atom collisions is a much developed research 
field. Nevertheless, a single suitable theory to deal with 
projectile energies ranging from low to high energies has 
not yet been found.  

    The earliest quantum calculations of electron capture 
cross sections were based on a simplified version of the first 
Born approximation [14, 15]. The two-center close-
coupling method is based on expanding the scattering 
wave-function into a linear combination of traveling atomic 
orbitals localized on two nuclear centers to describe the 
electron of the colliding atomic system. Therefore, it allows 
for the movement of the electron cloud between the target 
and the projectile; that is, electron capture from the target 
atom is possible. The choice of orbitals depends on the 
physical process of interest, as well as on the computational 
effort, convergence, and so on. If one can include a 
complete basis set of orbitals, one might study the collision 
process with any kind of basis set. In practice, it is very 
difficult to include a complete basis set, as discussed by 
Kuang and Lin [16]. 

    Olson [1] employed a three-dimensional Monte Carlo 
approach that uses a classical description of the hydrogen 
atom and the Coulomb forces among all particles to obtain 
the charge-transfer cross sections for collisions of proton or 
positive ions of higher electric charge with hydrogen 
atoms. Keim et al. [17] reported experimental and 
theoretical data for the degree of linear polarization of 
Lyman-α emission induced by proton and antiproton 
impact on atomic hydrogen, where a two-center extension 
of the basis generator method is used to solve the time-
dependent Schrӧdinger equation. Tupitsyn et al. [18] 
developed a method for solving the time-dependent two-
center Dirac equation to calculate the charge-transfer cross 
sections for the proton and ground state hydrogen atom 
collisions. The time-dependent Dirac wave-function is 

represented as a sum of atomic like Dirac-Sturm orbitals 
localized at the nuclei and the atomic orbitals are generated 
by numerical solution of the one-center Dirac and Dirac-
Sturm equations by means of a finite-difference approach 
with the Coulomb potential taken as the sum of the exact 
reference-nucleus potential and of the other nucleus within 
the monopole approximation.  

    Winter [4] extended the work of Shakeshaft [19, 20] and 
determined electron transfer and excitation, as well as 
ionization cross sections in collisions between protons and 
ground state hydrogen atoms using two-center close-
coupling Sturmian bases. Ferreira et al. [21] made 
calculations of the resonant cross sections for electron 
capture by proton from ground state hydrogen atoms in the 
impact parameter picture with a two-center atomic 
expansion. They used a two-state approximation with a 
continuum distorted wave basis, which ensured that 
Coulomb boundary conditions are met. The semi-classical 
close-coupling method [22] utilized a large basis of pseudo-
states for expansion of the electronic part of the scattering 
wave-function. The Hamiltonian for the target is 
diagonalized using the orthogonal Laguerre basis resulting 
in negative and positive energy pseudo-states. This method 
is generalized to include the electron capture channels and 
is used to study the electron-capture process in proton-
hydrogen collisions [23].  

    Abdurakhmanov et al. [24] developed a fully quantum-
mechanical two-center close-coupling approach to proton 
hydrogen scattering [25] to report the total capture cross 
sections for proton-hydrogen atom collisions. The 
formulation is based on the exact three body Schrödinger 
equation, where the total scattering wave-function is 
expanded in a two-center pseudo-state basis, which allows 
to include electron capture into bound and continuum states 
of the projectile. This leads to coupled-channel Lippmann–
Schwinger equations for the transition amplitudes in the 
momentum-space. Agueny et al. [26] reported the cross 
sections for electron capture process in collisions between 
fully stripped hydrogen, helium and lithium ions and 
hydrogen atoms in the ground. They used the two-center 
atomic orbital close-coupling approach [27] with 
expanding the wave-function on states expressed as linear 
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combinations of Gaussian-type orbitals. Tseliakhovich et 
al. [28] introduced a formalism to obtain the cross sections 
for collisions between protons and hydrogen atoms being 
initially in the ground state, they developed a numerical 
code which directly solves the Schrӧdinger equation with 
variable resolution and utilizes a hybrid Spatial-Fourier 
grid. Kolakwaska et al. [2] calculated capture cross sections 
for collision of proton with ground state hydrogen atom by 
direct solution of the time-depending Schrӧdinger equation 
on a three-dimensional Cartesian lattice. The cross sections 
are obtained by projecting a time-evolved wave-function 
onto a lattice target states of hydrogen. Tong et al. [6] 
calculated the 2s and 2p charge transfer cross sections in 
proton-hydrogen atom collision by direct solution of the 
time-dependent Schrӧdinger equation using the split-
operator method with a generalized pseudo-spectral 
method [29], where a classical trajectory approximation for 
the projectile is employed.  

    The present work is devoted to calculate the capture 
cross sections of electron by proton from atomic hydrogen 
in the ground state. The calculations are made in the impact 
parameter representation with a two-center atomic 
expansion. 

2. Method  

Capture of electron by proton from hydrogen atoms can be 
described in a two-center atomic-orbitals close-coupling 
approach. In the impact parameter formulation, an un-
deflected (straight line, constant velocity) trajectory for the 
nuclei can be used. Choosing a coordinate system such that 
the relative velocity of the nuclei   points along the z-axis 

and the inter-nuclear distance vector is given by t R b υ , 

where b is the impact parameter such that 0 b υ  and t is 

the time. Consider, ,T Pr r , and r  are the electron position 
vectors with respect to the target nucleus T, to the projectile 
P, and to the center of mass of the nuclei, respectively. The 
two-center atomic-orbitals close-coupling approach is 
based on expanding the electronic wave-function around 
both the target nucleus and the projectile. That is, the 
electronic wave-function can be expressed in the expansion 
[30] as 

2( /2 /8)( , ) ( ) ( )
T
ki t r tT

k k T
k

t a t e        υr r

 

2( /2 /8)( ) ( ) (1)
P
ji t r tP

j j P
j

c t e       υr

 

Here ( )T P
n n   are the eigenstates of the electron in the field 

of the target nucleus (projectile), and ( )T P
n n   are the 

associated eigenstates. The terms 
2( /2 /8)i r te    υ

 are the 
plane wave electronic translation factors, describe the 
motion of the target and projectile nuclei with respect to the 
center of mass of the nuclei. 

    Inserting the electronic wave-function ( , )t r  into the 
time-dependent Schrӧdinger equation of the colliding 
system gives the first-order coupled differential equations 

for the amplitudes ( )ka t  and 
( )jc t

 as 

  ( ) , (2. )i A SC H A KC a   
 

†( ) , (2. )i C S A KA HC b   
 

with the initial condition 0( ) , ( ) 0k k ja c   
,  

where 0 refers to the initial state  of the target atom. Where, 

A and C are the vectors of amplitudes ( )ka t  and 
( )jc t

 

respectively, S is the overlap matrix (
†S is its transposed 

form), H and H  are the direct coupling matrices, while K 

and K  are the electron exchange matrices defined by the 
expressions 
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    Because of the eigenstates of the electron in the field of 
the target nucleus or the field of the projectile has position 
symmetry under reflection through the collision plane

( , )υ b
, the eigenstates 

,P ( )T
nlm s

 can be further expanded as 
[31, 32]: 

,

, 0

( )
ˆ ˆ( ) ( 1) ( ) ( ) , 0 (3)
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R s
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
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Where, ( )nlR s  are the radial function and 
ˆ( )m

lY s  are the 
spherical harmonics. This reduces the number of states and 
makes evaluation of the exchange matrix elements 
possible. 

3. Calculations and Discussion 

Application of the two-center atomic-orbitals close-
coupling approach needs solving the coupled differential 
equations (2.a) and (2.b). The integration of these coupled 

differential equations over z t is carried out from z = 
−500 to z = 500 au by using Maple 18 codes of the 
Bulirsch-Stoer method, for fixed values of the impact 
parameter at given impact energies. The corresponding 

capture cross sections into the state nlm  can be obtained 
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by squaring the transition amplitudes and integrating over 
the impact parameter, i.e., 

2

0

2 ( , ; )nlm nlmc b z b db 


 
 

0

2 17 2( 8.797 10 cm ) (4)a    

    In the present work, we employ a two-center atomic-
orbital close-coupling method to calculate the cross 
sections for capture of electron into 1s, 2s, and 2p states in 
collisions between protons and H(1s) atom. We have 
considered atomic orbital bases, of the n=1 to 4 states, on 
each of the projectile and the atomic nucleus centers. The 
effectiveness of the calculations is examined by employing 
the two-state and three-state approximations [7].  

    In what follows, the results are plotted in the impact 
energy region from 4 to 200 keV and discussed. In addition, 
we compare our results (solid curves) with the previous 
theoretical work of Tseliakhovich et al. [28] (dot curves) 
and Agueny et al. [26] (dashed curves) as well as the 
experimental measurements [9, 11, 13]. Measurements of 
Morgan et al. [9] for capture of electron into 2p state and 
Chong and Fite [11] for capture of electron into 2s state are 
based on a modulated crossed-beam technique. Hill et al. 
[13] used a tungsten-tube furnace to provide a target of 
highly dissociated hydrogen for incident protons or equi-
velocity deuterons to measure capture cross sections into 2s 
state.  

    Fig. 1 illustrates the cross section for capture of electron 
into the 1s state in collision between proton and H (1s) atom 
as function of the impact energy. There seems to be a 
systematic shift between the present results and those of 
Tseliakhovich et al. [28] and Agueny et al. [26], which 
increase as the energy decreases. It is easy to see that the 
calculations of Tseliakhovich et al. [28] and Agueny et al. 
[26] are very close while the present calculations give 
higher cross sections. However, over the impact energy 
range the electron capture cross section rapidly diminishes. 

 

 

Fig. 1 Cross section for capture of electron into 1s state in 
collision between proton and H(1s) atom as function of the 
impact energy: Solid curve, present results; dot curve, 
Tseliakhovich et al. [28]; dashed curve, Agueny et al. [26]. 

    In Fig. 2 we show the impact energy dependence of the 
cross sections for the electron capture into the 2s state in 
collision between proton and H (1s). The curves show 
maximum peaks near the matching velocity, at 25 keV 
impact energy, because of the large overlap of the electron 
cloud between the projectile and target. It is observed that 
our calculated cross sections are greater than those of 
Tseliakhovich et al. [28] and Agueny et al. [26] as well as 
the experimental measurements of Hill et al. [13] and 
Chong and Fite [11]. However, all the calculations are very 
close at impact energies above 60 keV and a systematic 
shift between the present results and previous ones can be 
noticed.  

 

Fig. 2 Cross section for capture of electron into 2s state in 
collision between proton and H(1s) atom as function of the 
impact energy: Theoretical results: Solid curve, present 
results; dot curve, Tseliakhovich et al. [28]; dashed curve, 
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Agueny et al. [26]. Experimental data: Filled triangles, Hill 
et al. [13]; empty triangles, Chong and Fite [11]. 

    Resulting plots of the 3p capture cross sections are given 
in Fig. 3. One can see that; the present cross sections are 
larger than those of Tseliakhovich et al. [28] over the 
impact energy range and are slightly larger than the results 
of Agueny et al. [26] at impact energies above 50 keV. It is 
seen that our results give good agreement with the 
experimental work of: Morgan et al. [9] at energies above 
10 keV. Also, we can say that there is a systematic shift 
between the present results and the previous ones but in 
different directions. The curves show maximum peaks near 
the 15 keV impact energy. 

 

 

 

Fig. 3 Cross section for capture of electron into 2p state in 
collision between proton and H(1s) atom as functions of the 
impact energy: Theoretical results: Solid curve, present 
results; dot curve, Tseliakhovich et al. [28]; dashed curve, 
Agueny et al. [26]. Experimental data: Morgan et al. [9]. 

 

Finally, a comparison among our results for capture cross 
sections into 1s, 2s and 2p states show that cross sections 
for electron capture into the excited 2s and 2p states are 
much smaller than the 1s state especially at low impact 
energies. This may be due to the state-selective charge 
transfer effect, which represents the sensitivity of the 
magnitude of the capture cross section to the energy defect 
between the initial and final states of the collision system. 
It is also observed that the 2p state capture cross sections 
are smaller than the corresponding the 2s state results for 
impact energies above 8 keV. It is noticed that the 2s and 
2p cross sections show max peaks while the 1s cross 
sections do not. 

 

 

4. Conclusion  

Calculations for cross sections for capture of electron into 
1s, 2s, and 2p states in collisions between protons and H 
(1s) atoms are carried out in a two-center atomic-orbital 
close-coupling method. There seems to be a systematic 
shift between the present results and the previous ones, 
which increase as the energy decreases. At low collision 
energies the resonant reaction, capture into the 1s state, is 
more state-selective than the other reactions. Anyway, the 
agreement with the available previous theoretical and 
experimental results is satisfactory.   
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