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In this paper, we consider Bianchi type I universe filled with non-interacting cold dark matter and holographic dark energy. Exact 
solutions of Einstein’s field equations are obtained by assuming the average scale factor to be a combination of power law and 
exponential function, known as hybrid expansion law. The physical and geometrical properties of the solutions are also discussed. 
The results obtained are found to be consistent with recent cosmological observations. Moreover, a correspondence between the 
holographic dark energy and polytropic gas model of dark energy is established which allows us to reconstruct the potential and 
the dynamics for the scalar field of the polytropic gas describing the accelerated expansion of the Universe. 
 

 

1. Introduction 

According to various recent cosmological and 
astrophysical observations such as Supernovae Type 
Ia (SN Ia) [1, 2, 3], Cosmic Microwave Background 
(CMB) [4, 5], Large Scale Structure (LSS) [6, 7, 8] 
and other, it is evident that our universe is currently 
undergoing an accelerated phase of expansion. In the 
framework of standard cosmology, an exotic 
component with negative pressure, dubbed dark 
energy (DE), is needed to explain this acceleration. 
    Many candidates of dark energy are proposed in the 
literature. Among them the cosmological constant 
with the equation of state parameter 𝜔௸ = −1 is the 
earliest, simplest and the most natural candidate of 
dark energy, and the ΛCDM (Λ-cold dark matter) is 
the most successful model for the present accelerated 
expanding universe. However, from theoretical 
viewpoint it faces with the fine-tuning and cosmic 
coincidence problems [9].  
    In addition to the cosmological constant, there are 
dynamical dark energy scenarios to explain the nature 
of dark energy such as quintessence [10 - 12], phantom 
[13], k-essence [14], tachyon [15], dilatonic ghost 
condensate model [16]. Some interacting models of 
dark energy such as Chaplygin gas models [17], brane-
world models [18] etc. are also considered in the 
literature. 
    There has been also considerable interest to explain 
the observed acceleration of the Universe with the help 
of quantum gravitational principle i.e., the holographic 
dark energy principle. The principle was first put 
forwarded by G. ’t Hooft [19] to explain the 
thermodynamics of black hole physics. Holographic 

dark energy model emerges from the Holographic 
Principle which states that the number of degrees of 
freedom directly related to entropy of the system 
scales with the enclosing surface area of the system 
and not with its volume [20].  A new version of this 
holographic principle was first applied by Fischler and 
Susskind [21] to cosmological context which states 
that the gravitational entropy within a closed surface 
should not be always larger than the particle entropy 
that passes through the past light-cone of that surface.  
    But the IR cut-off cannot be determined with the 
help of holographic dark energy principle. The 
researchers working in this field proposed various 
choices of IR cut-off which lead to new problems in 
physics. Granda and Oliveros [22] proposed a 
holographic dark energy density of the form 𝜌ு஽ா ≈

𝛼𝐻ଶ + 𝛽𝐻̇, where H is the Hubble parameter,   and 
  are constants which must satisfy the restrictions 

imposed by the current observational data. They 
showed that this new dark energy model can explain 
the current cosmic acceleration of our universe and is 
consistent with the observational data. Granda and 
Oliveros [23] have established correspondence 
between quintessence, tachyon, k-essence and dilaton 
dark energy models with this holographic dark energy 
in the flat Friedman Robertson Walker (FRW) 
universe. Chattopadhyay [24], Farajollahi et al. [25], 
Karami and Fehri [26], Malekjani [27], Rao et al. [28], 
Guberina et al. [29], Iv`an and Pav`on [30], Mete et al. 
[31], Ghaffari [32], Rahman and Ansari [33], 
Saridakis [34], Saadat [35], Srivastava et al. [36], 
Katore and Kapse [37] et al. have also investigated 
several aspects of holographic dark energy (HDE). 
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    It is a well-known fact that although our universe is 
homogeneous and isotropic at large scale, and one of 
the most generalizations of the flat universe is the 
FRW model of the Universe, but there is no 
observational evidence that rules out the possibility of 
an anisotropic universe. The issue of global anisotropy 
can be settled if we can incorporate anisotropy to the 
flat FRW model in a suitable manner [38]. The FRW 
universe has the same scale factor for each of the three 
spatial directions. The Bianchi type I universe has 
different scale factors in the three spatial directions.      
Also, it is the simplest spatially homogeneous and 
anisotropic flat universe. Spatially homogeneous and 
anisotropic cosmological models play a significant 
role in the description of large scale behavior of the 
universe and such models have been widely studied by 
many authors in search of a relativistic picture of the 
early universe.  
    In literature, various Bianchi type models are 
studied in different contexts. Bianchi type I 
homogeneous models are the simplest anisotropic 
models of the universe whose spatial sections are flat, 
but the expansion or contraction rates are directionally 
dependent. For a simplification and description of the 
large scale structure and behavior of the actual 
universe, anisotropic Bianchi type I models have been 
considered by several authors on different aspects. So 
it will be interesting to study the evolution of the 
universe with non interacting cold dark matter and 
holographic dark energy in an anisotropic universe 
like Bianchi type I. 
    In stellar astrophysics, the polytropic gas model can 
explain the equation of state of degenerate white 
dwarfs, neutron stars and also the main sequence stars 
[39]. They have constructed the equation of state of 

polytropic gas as 𝑃௣௚ = 𝐾𝜌௣௚

ଵା
భ

ആ, where K and η are the 
polytropic constant and polytropic index, respectively.  
The idea of dark energy with polytropic gas equation 
of state

 
has been investigated by U. Mukhopadhyay 

and S. Ray [40] in cosmology. Karami et al. [41] have 
constructed energy density and pressure 
corresponding to scalar field   for polytropic gas. 

Rahman and Ansari [33], Karami et al. [41], Karami 
and Ghaffari [42], Adhav [43], Setare and Kamali 
[44], Taji and Malekjani [45] and many other authors 
have investigated polytropic gas in different models to 
explain the late time cosmic acceleration. 
    In this paper, we consider the spatially 
homogeneous and anisotropic Bianchi type I universe 
filled with non-interacting cold dark matter and 
holographic dark energy and investigate the 
correspondence with polytropic gas model. The paper 
is organized as follows: In Sec. 2, we derive the cosmic 
evolution equations from the Einstein field equations 
in the background of Bianchi type I metric. 

Cosmological solutions of the field equations are 
obtained in Sec. 3 by taking average scale factor to be 
a combination of power law and exponential function 
which is termed as hybrid expansion law. We present 
our solutions in Sec. 4 with a brief discussion. The 
correspondence between holographic dark energy and 
polytropic gas model is established in Sec. 5. We 
conclude the paper with a brief discussion in Sec. 6. 
 

2.  The metric and field equations 
 

We consider the spatially homogeneous and 
anisotropic Bianchi type I space-time described by the 
line element  

𝑑𝑠ଶ =  −𝑑𝑡ଶ + 𝐴ଶ𝑑𝑥ଶ + 𝐵ଶ𝑑𝑦ଶ + +𝐶ଶ𝑑𝑧ଶ         (1) 

Where, A, B, C are functions of cosmic time t only. 

  We assume that the universe is filled with non-
interacting cold dark matter and holographic dark 
energy (HDE). 

Einstein’s field equations in natural units (8𝜋𝐺 =
1, 𝑐 = 1) are given by 

𝑅௜௝ −
ଵ

ଶ
𝑔௜௝𝑅 = −(𝑇௜௝ + 𝑇ത௜௝)                                    (2) 

Where, 𝑅௜௝  is the Ricci tensor, 𝑅  is the Ricci scalar, 
𝑇௜௝  and 𝑇ത௜௝ are the energy momentum tensors for cold 
dark matter and HDE respectively.  

The energy momentum tensor 𝑇௜௝  for cold dark matter 
with energy density 𝜌௠ is given by 

𝑇௜௝ = 𝜌௠𝑢௜𝑢௝                                                         
(3)  

 
 

And the energy momentum tensor 𝑇ത௜௝  for HDE is 
given by 

𝑇ത௜௝ = (𝜌ு஽ா + 𝑝ு஽ா)𝑢௜𝑢௝ + 𝑔௜௝𝑝ு஽ா                    (4)  

Where, 𝜌ு஽ா  and 𝑝ு஽ா   are the energy density and the 
pressure of the HDE, respectively. 

The HDE density proposed by L. N. Granda and A. 
Oliveros [18] is

 𝜌ு஽ா = 3𝑀௣
ଶ(𝛼𝐻ଶ + 𝛽𝐻̇)                                       (5) 

Where, 𝑀௣
ିଶ = 8𝜋𝐺 = 1 and α and β are constants. 

Now, in co-moving coordinate system the equations 
(2) with (3) and (4) for the metric (Eqn. (1)) lead to the 
following system of field equations 

஻̈

஻
+

஼̈

஼
+

஻̇஼̇

஻஼
= −𝑝ு஽ா                                                (6) 
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஼̈

஼
+

஺̈

஺
+

஼̇஺̇

஼஺
= −𝑝ு஽ா                                                (7) 

஺̈

஺
+

஻̈

஻
+

஺̇஻̇

஺஻
= −𝑝ு஽ா                                       (8) 

஺̇஻̇

஺஻
+

஻̇஼̇

஻஼
+

஼̇஺̇

஼஺
= 𝜌௠ + 𝜌ு஽ா                                     (9) 

Where, an  over dot denotes differentiation with 

respect to the cosmic time t.
 

The conservation of energy-momentum yields  
 

𝜌̇௠ + 𝜌̇ு஽ா + 3𝐻(𝜌௠ + 𝜌ு஽ா + 𝑝ு஽ா) = 0        (10) 
But the continuity equation for the cold dark matter is 
𝜌̇௠ + 3𝐻𝜌௠ = 0                                      (11) 

And the continuity equation of the HDE is 
𝜌̇ு஽ா + 3𝐻(𝜌ு஽ா + 𝑝ு஽ா) = 0         (12) 

The equation of state parameter for HDE is 
𝜔ு஽ா =

௣ಹವಶ

ఘಹವಶ
                         (13) 

Therefore, from Eqns. (5), (12) and (13), we get 

𝜔ு஽ா = −1 −
ଶఈுு̇ାఉு̈

ଷு(ఈுమାఉு̇)                                     (14) 

 
3. Cosmological solutions of the field equations 

 
From equations (6) - (9), we derive 

   𝐴(𝑡) = 𝑎ଵ(𝐴𝐵𝐶)
భ

యexp (𝑏ଵ ∫(𝐴𝐵𝐶)ିଵ𝑑𝑡)        (15) 

  𝐵(𝑡) = 𝑎ଶ(𝐴𝐵𝐶)
భ

యexp (𝑏ଶ ∫(𝐴𝐵𝐶)ିଵ𝑑𝑡)            (16) 

  𝐶(𝑡) = 𝑎ଷ(𝐴𝐵𝐶)
భ

యexp (𝑏ଷ ∫(𝐴𝐵𝐶)ିଵ𝑑𝑡)            (17) 
Where,  
𝑎ଵ𝑎ଶ𝑎ଷ = 1   and  𝑏ଵ + 𝑏ଶ + 𝑏ଷ = 0 
To find an exact solution, we consider the average 
scale factor 𝑎 given by 

𝑎 = (𝐴𝐵𝐶)
భ

య                                                         (18)  
as  

𝑎(𝑡) = 𝑎଴(
௧

௧బ
)ఊ𝑒

క(
೟

೟బ
ିଵ)

                        (19) 

Where, γ and ξ are non-negative constants and 0a  and

0t  represent the present value of the scale factor and 

age of the Universe, respectively. The constants γ = 0 
yields the exponential law cosmology and ξ = 0 gives 
power law cosmology. Thus, the relation in Eqn. (19) 
is a combination of a power-law and an exponential 
function and therefore, it is called the Hybrid 
Expansion Law (HEL). This law was first proposed by 
Akarsu et al. [46]. Further, the scale factor given by 
Eqn. (18) yields a time-dependent deceleration 
parameter which exhibits a transition of the Universe 

from the early decelerating phase to the present 
accelerating phase. 
Now, using Eqns. (19) in (15), (16) and (17) we get 

𝐴(𝑡) = 𝑎ଵ(𝑘𝑡ଷఊ𝑒
య഍೟

೟బ )
భ

యexp (𝑏ଵ𝐹(𝑡))                       (20) 

𝐵(𝑡) = 𝑎ଶ(𝑘𝑡ଷఊ𝑒
య഍೟

೟బ )
భ

యexp (𝑏ଶ𝐹(𝑡))                       (21) 

𝐶(𝑡) = 𝑎ଷ(𝑘𝑡ଷఊ𝑒
య഍೟

೟బ )
భ

యexp (𝑏ଷ𝐹(𝑡))                       (22) 

Where, 

    𝐹(𝑡) = ∫( 𝑘𝑡ଷఊ𝑒
య഍೟

೟బ )ିଵ𝑑𝑡 and k is a non zero 
constant of integration. 

Hence, the line element (1) can be expressed as 
𝑑𝑠ଶ =  −𝑑𝑡ଶ +

(𝑘𝑡ଷఊ𝑒
య഍೟

೟బ )ି
మ

య[𝑎ଵ
ଶ exp൫2𝑏ଵ𝐹(𝑡)൯ 𝑑𝑥ଶ +

𝑎ଶ
ଶ exp൫2𝑏ଶ𝐹(𝑡)൯ 𝑑𝑦ଶ + 𝑎ଷ

ଶ exp൫2𝑏ଷ𝐹(𝑡)൯ 𝑑𝑧ଶ    (23) 

4. Result and discussion 
  
The cosmological parameters viz. the spatial volume 
(𝑉)  the directional Hubble parameters (𝐻௜) , mean 
Hubble parameter (𝐻) , expansion scalar ( 𝜃 ), 
deceleration parameter ( 𝑞) , shear scalar (σ2) and 
anisotropy parameter (𝐴)  for our model are obtained 
as 

𝑉 = 𝑎ଷ = [𝑎଴ ቀ
௧

௧బ
ቁ

ఊ

𝑒
కቀ

೟

೟బ
ିଵቁ

]ଷ                       (24) 

𝐻ଵ =
஺̇

஺
=

ଵ

ଷ
(𝑘𝑡ଷఊ𝑒

య഍೟

೟బ )ିଵ𝑘[3𝛾𝑡ଷఊିଵ𝑒
య഍೟

೟బ +

𝑡ଷఊ𝑒
య഍೟

೟బ
ଷక

௧బ
]  + 𝑏ଵ𝐹′(𝑡)          (25) 

𝐻ଶ =
஻̇

஻
=

ଵ

ଷ
(𝑘𝑡ଷఊ𝑒

య഍೟

೟బ )ିଵ𝑘[3𝛾𝑡ଷఊିଵ𝑒
య഍೟

೟బ +

𝑡ଷఊ𝑒
య഍೟

೟బ
ଷక

௧బ
]  + 𝑏ଶ𝐹′(𝑡)          (26) 

𝐻ଷ =
஼̇

஼
=

ଵ

ଷ
(𝑘𝑡ଷఊ𝑒

య഍೟

೟బ )ିଵ𝑘[3𝛾𝑡ଷఊିଵ𝑒
య഍೟

೟బ +

𝑡ଷఊ𝑒
య഍೟

೟బ
ଷక

௧బ
]  + 𝑏ଷ𝐹′(𝑡)          (27) 

𝐻 =
ଵ

ଷ
ቀ

஺̇

஺
+

஻̇

஻
+

஼̇

஼
ቁ =

ఊ

௧
+

క

௧బ
         (28) 

𝜃 = 3𝐻 = 3(
ఊ

௧
+

క

௧బ
)          (29) 

𝑞 = −
௔௔̈

௔̇మ = −1 −
ு̇

ுమ = −1 +
ఊ

(ఊା
഍೟

೟బ
)మ

        (30) 

𝜎ଶ =
ଵ

ଶ
(∑ 𝐻௜

ଶ −
ଵ

ଷ
𝜃ଶ) =

ெ

ଶ(௞௧యം௘

య഍೟
೟బ )

ଷ
௜ୀଵ         (31) 
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𝐴 =
ଵ

ଷ
∑ (

ு೔ିு

ு
)ଶ =

ெ

ଷ

(௞௧యം௘

య഍೟
೟బ )షమ

(
ം

೟
ା

഍

೟బ
)మ

ଷ
௜ୀଵ                        (32) 

Where, 𝑀 = 𝑏ଵ
ଶ + 𝑏ଶ

ଶ + 𝑏ଷ
ଶ 

 

 

 
Fig. 1 H vs. cosmic time t graph with 1, 1   ,

0 13.8t    

 
Fig. 1 clearly shows that Hubble parameter is a 
decreasing function of cosmic time. 
 

 

Fig. 2 Plot of deceleration parameter q vs. t graph 

with 0.1, 1, 13.8t   
 

Fig. 2 shows the variation of deceleration parameter 
(q) vs. cosmic time t. From the graph we see that the 
deceleration parameter (DP) decreases rapidly and 
approaches −1 asymptotically which shows de-Sitter 

like expansion at late time. For this model, the DP 
gives a transition from a decelerating expansion phase 
to the present accelerating phase of the universe. Also 
it is clear that the value of DP is positive at the early 
stage of the universe and becomes negative at late 
time. The negative value of DP shows the accelerating 
expansion of the universe. The Planck collaboration 
results (Ade et al. 2013) [47] shows that the value of 
the deceleration parameter lies in the range −1 < q <0. 
Thus our derived model is suitable to describe the late 
time evolution of the universe. 

 

Fig. 3 Plot of anisotropy parameter vs. cosmic time t 

graph with 01, .2, 1, 1, 13.8M k t     
 

         Fig. 3 shows the variation of anisotropic 
parameter (A) vs. cosmic time t. From the figure we 
see that anisotropic parameter decreases as time 
evolves and tends to zero. Hence, we can conclude that 
although our model is anisotropic at the early phase of 
the universe, the anisotropy dies out with time leading 
to the present isotropic phase of the Universe.  
 
Now, using (28) in (5), we get 

𝜌ு஽ா = 3[𝛼 ቀ
ఊ

௧
+

క

௧బ
ቁ

ଶ

−
ఉఊ

௧మ ]         (33) 

Again using (28) in (11), we get 

𝜌௠ = 𝐷[𝑡ିଷఊ𝑒
ష഍೟

೟బ ]          (34) 

Where, D is a constant of integration. 
Thus the coincidence parameter is obtained as 

𝜇 =
ఘಹವಶ

ఘ೘
=

ଷ[ఈቀ
ം

೟
ା

഍

೟బ
ቁ

మ
ି

ഁം

೟మ ]

஽[௧షయം௘

ష഍೟
೟బ ]

                        (35) 
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Fig 4 Holographic dark energy (HDE) density and 
dark matter density vs. cosmic time t graph with

01, 1, 1, 0.05, 100, 13.8D t         . 

Green line represents the HDE density and black line 
represents the cold dark matter density. 

    Fig. 4 shows that both HDE density and cold dark 
matter density decreases as time evolves while 
𝜌௠ tends to zero and 𝜌ு஽ா is near to zero at late time.    

The dark matter density parameter (𝛺௠ ) and HDE 
density parameter(𝛺ு஽ா) are given by 

Ω௠ =
஽[௧షయം௘

ష഍
೟బ ]

ଷቀ
ം

೟
ା

഍

೟బ
ቁ

మ                           (36) 

Ωு஽ா = 𝛼 −
ఉఊ

௧మቀ
ം

೟
ା

഍

೟బ
ቁ

మ          (37) 

Hence the total energy density parameter is given by 

Ω = Ω௠ + Ωு஽ா =  𝛼 +
஽௧మ൥௧షయം௘

ష഍೟
೟బ ൩ିଷఉఊ

ଷ௧మቀ
ം

೟
ା

഍

೟బ
ቁ

మ            (38) 

 

Fig. 5 Plot of total energy density vs. cosmic time t 
graph with 

01, 100, .05, 1, 1, 13.8D t          

    Fig. 5 shows the variation of total energy density vs. 
cosmic time t. The total energy density approaches 1. 
So, our model approaches a flat, isotropic universe at 
late time.  
 
Now, from Eqns. (21) and (34), the EOS parameter is 
obtained as 

𝜔ு஽ா = −1 −
ିଶఈఊ௧ቀ

ം

೟
ା

഍

೟బ
ቁାଶఉఊ

ଷቀ
ം

೟
ା

഍

೟బ
ቁ[ఈ௧యቀ

ം

೟
ା

഍

೟బ
ቁ

మ
ିఉఊ௧]

                    (39) 

 

Fig. 6 Plot of EoS parameter vs. cosmic time t graph 

with 01, .05, 1, 1, 13.8t       
 

    Fig. 6 represents the Eos parameter vs. cosmic time 
t which decreases rapidly and approaches -1 
asymptotically. So, our model represents a ɅCDM 
model for late universe.  
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5. Correspondence between the Holographic and 

Polytropic gas model of dark energy 
 
The equation of state parameter of polytropic gas is 
given by 

𝑃௣௚ = 𝐾𝜌௣௚

ଵା
భ

ആ           (40) 

Where, K and η are the polytropic constant and the 
polytropic index respectively (Christensen-Dalsgaard 
2004). 
The energy density of polytropic gas is defined as 

𝜌௣௚ = (𝐵𝑎
య

ആ − 𝐾)ିఎ                        (41) 

Where, B is the positive constant of integration and a 
is the scale factor. It can be seen that the polytropic 
index η should be even to obtain positive energy 
density. 
 Using equations (40) and (41), we find the EoS 
parameter as 

𝜔௣௚ =
௉೛೒

ఘ೛೒
= −1 −

஻௔
య
ആ

௄ି஻௔
య
ആ

                        (42) 

If polytropic gas is treated as an ordinary scalar field 
then the energy density and pressure of the scalar field 
are given by 

𝜌థ =
థమ̇

ଶ
+ 𝑉(𝜙)                         (43) 

𝑃థ =
థమ̇

ଶ
− 𝑉(𝜙)                         (44) 

Where, an over dot denotes the derivative with respect 
to the cosmic time t. 
Now, using equations (40), (41), (43) and (44) we 
obtain the scalar potential and the kinetic energy terms 
for the polytropic gas model as 

𝑉(𝜙) =
భ

మ
஻௔

య
ആି௄

(஻௔
య
ആି௄)ആశభ

          (45) 

𝜙ଶ̇ =
஻௔

య
ആ

(஻௔
య
ആି௄)ആశభ

                         (46) 

To establish the correspondence between the 
holographic dark energy with polytropic gas dark 
energy model, we compare the holographic dark 
energy density with the energy density of polytropic 
gas model and also equate the EoS parameters of both 
the models. We assume that the holographic dark 
energy density of our model is equivalent to the energy 
density of polytropic gas. 
Equating equations (33) and (41), we get 

(𝐵𝑎
య

ആ − 𝐾)ିఎ=3[αቀ
ఊ

௧
+

క

௧బ
ቁ

ଶ

−
ఉఊ

௧మ ]                       (47) 

Again comparing Eqns. (39) and (42), we get 

−1 −
஻௔

య
ആ

௄ି஻௔
య
ആ

= −1 −
ଶఈఊ௧ቀ

ം

೟
ା

഍
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ം

೟
ା

഍

೟బ
ቁ[ఈ௧యቀ

ം

೟
ା

഍

೟బ
ቁ

మ
ିఉఊ௧]

          (48) 

Now, solving Eqns. (47) and (48), we get 
𝐵 =

ଷ
షభషആ

ആ [௔బ(
೟
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)ം௘

഍(
೟

೟బ
షభ)
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ା

഍

೟బ
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ം
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మ
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                                                    (49) 
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𝑎
య

ആ −

3
షభ

ആ [𝛼 ቀ
ఊ

௧
+

క

௧బ
ቁ

ଶ

−
ఉఊ

௧మ ]
షభ

ആ                                          (50) 

Now, using Eqns. (49) and (50) in (45) and (46), we 
can find the kinetic energy term and the potential of 
the polytropic gas dark energy model. This type of 
potential can produce an accelerated expansion of the 
Universe. Thus a correspondence between the 
holographic dark energy and polytropic gas can be 
established.  We can also describe holographic dark 
energy by making use of polytropic gas. 
 

6. Conclusion 
 
  In this work, we study a spatially homogeneous and 
anisotropic Bianchi type I universe filled with cold 
dark matter and HDE. To obtain the exact solution of 
Einstein’s field equations, we consider the hybrid 
expansion law proposed by Akarsu et al. [46], which 
yields power-law and exponential function. We also 
discuss some physical and geometrical properties of 
the model.  
We observe that 

 The universe starts with a zero volume at t = 
0. 

 The average Hubble parameter H is a 
decreasing function of time and at t→∞, 
ௗு

ௗ௧
→ 0. 

 From Fig. 2, we see that the deceleration 
parameter (DP) decreases rapidly and 
approaches −1 asymptotically, which shows 
de-Sitter like expansion at late time. 

 
ఙమ

ఏమ ≠ 0 as well as the anisotropy parameter 

𝐴 ≠ 0 except at 𝑀 = 0, which implies that 
our model is anisotropic at all times except 
when 𝑀 = 0   i.e. the Universe is isotropic 
only for 𝑀 = 0. But from Fig. 3, we see that 
anisotropic parameter decreases as time 
evolves and tends to zero. Hence, we can 
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conclude that the anisotropy of our universe 
dies out in the course of evolution to reach the 
present isotropic phase. 

 Fig. 4 shows that both holographic dark 
energy density and cold dark matter density 
decrease as time evolves and cold dark matter 
density tends to zero at late time. 

 Fig. 5 shows that for large t, the total energy 
density approaches 1. So, our model 
approaches a flat, isotropic universe at late 
time. 

 Fig. 6 shows that the EoS parameter of our 
model is never positive throughout the 
evolution of the Universe. It decreases 
rapidly and approaches −1  asymptotically. 
So, our model represents a ɅCDM model for 
late universe.  

Further, we establish a correspondence between 
holographic dark energy and the polytropic gas model 
and reconstruct the potential of the polytropic scalar 
field as well as the dynamics of the scalar field 
according to the evolution of the holographic dark 
energy. 
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