The African Review of Physics (20183:0002

Dirac and Schrodinger Equationsin Presence of Actual and Exponential Inverted
Generalized Hyperbolic Potential

C. A. Onat&, M.C. Onyeajti, O. Ebomwonyi O.E. Odeyenfi

aPhysics Program, Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.

bTheoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria.

“Theoretical Physics Section, Department of Physics, University of Benin, Nigeria.

dDepartment of Science Laboratory Technology, Federal College of Animal Health and Production Technology,
Ibadan, Nigeria.

Abstract

Using two different methods, we approximately sdiie Dirac equation and the Séflinger equation with an inverted
generalized hyperbolic potential in actual and evgmtial form. By varying the values of parameterb,ac and d, we obtained
energy eigenvalues for some well-known potentiatieil®. We have shown the behavior of ground stateggrwithd for some
potential models. A comparison of the numericalitssshows an excellent agreement between the eméggnvalues of the
hyperbolical potential and the inverted generaliaggerbolic potential.

1. Introduction

The analytical solutions of both the relativistinda
non-relativistic wave equations for some known
physical potential models have been a great line of
interest in several research areas in quantum
mechanics due to their importance in quantum system
[1]. However, only a few of these potentials can
explicitly be solved for alln and ¢ quantum numbers

[2] for some special cases of interaction due ® th
presence of the inverse square term. The presdnce o
the centrifugal term requires the use of approxiomat
schemes. The most frequently used are the Pakeris
approximation scheme [3] and the Greene-Aldrich
approximation type [4]. Considering the effect loé t
relativistic wave equation with several potentialds,
there are various works on the Dirac equation aed t
Klein-Gordon equation using approximation schemes.
The Klein-Gordon equation is the equation of motion
of a quantum scalar or pseudo-scalar field whose
guanta are spin-less particles (pion) [5]. It dibss

the quantum amplitude for finding a point partioie
various places. On the account of the Dirac equoatio
it describes the elementary spin - ¥ particles sagh
electron consistent with both the particles of quan
mechanics and the theory of special relativity [6].
Dirac equation provides a theoretical justificatfon

the interaction of several component wave functions
Pauli's phenomenological theory of spin. In theeaafs
bound state solutions in this study, the Dirac équa

is viewed under spin and pseudospin symmetry. The
reliability of the pseudospin symmetry was analyzed
by Marcos et al. [7] and they found that the nuclea
surface strongly increases the effect of the psspide
orbital potential. They also pointed out that the
pseudospin symmetry cannot be justified by the

smallness of the potentiad.(r)but by the strong

compensation of different contributions to the &ng
particle energy of a nucleon in the Dirac equaf&n
Page et al. [9] however pointed out that the caomlit

of the difference between the scalar potential and

vector potential A(r) results in the spin symmetry
which is relevant to mesons.

The aim of this paper is to investigate the
amendability of the inverted generalized hypertalic
potential with both the relativistic and non-relétic
wave equations in its actual form and its exporénti
form. Thus, in this study, we investigate the egerg
spectrum of both the Dirac equation and the
Schidinger equation in the framework of parametric
Nikiforov-Uvarov method and the supersymmetric
approach, respectively, with the actual and
exponential inverted generalized hyperbolic po&nti
The inverted generalized hyperbolic potential & it
actual form under consideration is given by [10]
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Vi () =2, cothir /D cotf? ar ), cscfar ¥,
1)

where, a,b,cand d are real constantsy,,V, and

V, are potential depth. By varying the magnitude of

the real constants, we can easily obtain some known
potential models as we shall see later. This piatieist
closely related to the real hyperbolical potential,
asymmetric and symmetric Rosen-Morse potential.
However, the potential (1) can be studied expiicitl

using the following approximation scheme
1 — 2 2
F—a csch” @r), )

which is a good approximation to the centrifugairte

> and it is valid fora << 1. The potential (Eqn.
r

(1)) in its exponential form is

(1+e”) 4y-oy)e™

1-e™ (1-e=)"

Ve (N)=d+0y — (3)

and the approximation (Eqgn. (2)) in the form

14

r? N (1_ g2ar )2 ' @

where we have used the following transformation

sinh(ar) :ﬂ, )
2
cosh(ar) =em+—2e_m. 6)

The scheme of our work is as follows. In seto
we briefly review the parametric Nikiforov-Uvarov
method. In section 3, we obtained the bound state
solutions for Dirac and Scbdinger equations. In
section 4, we discussed the work and result while i
the final section, we state the conclusion.

2. Parametric Nikiforov-Uvarov method
The method Nikiforov-Uvarov (NU) method is based

upon reducing the second-order linear differential
equation to a hyper-geometric type equation [13]. B

introducing an appropriate coordinate transfornmatio
S= S(X) ,one can write an equation of the form

w"(s)+%w'(s)+

where 0(S) and 5(8) are polynomials of degree

two at most, and’ (S) is a polynomial of degree one
at most. To use parametric Nikiforov-Uvarov method,

Tezcan and Sever [12-15], we transformed Eq. (@) in
the following form

14 S (3

-AS+Bs-C

T

(8)

According to the parametric Nikiforov-Uvarov
method, the condition for eigenvalues and eigen-
functions are [12-15]

~(2n+Ya,+[n(n-1+ 2, ]a,=
-J4a,a, —(2n+])(\/?9+a3\/?8). 9)
and
W, (s)=N,,s™(1- ass)_”“_of x
[010‘1’@‘010‘1]
\ (1-2a.,9) (10)
respectively, where
1- a,—2a,
a, = Zal,as > A =ai+A,
a, =2a,a.,—-B,a,=a’+C,
09 = a3 (a7 +aﬂ8) +a6’
. (11)

a10=a1+2a4+ a8’
a11=a2—2a5+2(1/a9+a3,/a8),
O, =0, 0g, 013~ 05 (\/ a ot as\a; )
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3. Dirac equation with exponential inverted
gener alized hyperbolic potential

The Dirac equation for a spin-1/2 particle with sas
M moving in the field of a repulsive vector and

attractive scalar potentials V(r)and S(r))in
relativistic units(C =% =1) is given as

[ap+AM+[r))-(E-V(r)) Jy(r)=0.  @2)
where p=-i [ is the momentum operatdf denote

the relativistic energy of the system, and [ are

4 x 4 usual Dirac matrices. The spin and pseudospin
symmetry for the Dirac equation are given by

[%_(M +E, ~Ar)M-E,, +Z(r))} F..(r)
dA(r)( d +kj
_ k(k2+1)_ dr \dr r FL(0), (1)

r M+E,, —A(r)

{% ~(M+E, ~A(r)(M-E,, +Z(r))}Gn,f (r)

dZ(r)(d_kj
_ k(k=1) dr ldr r
r’ M-E,, +2(r)

G, (r) 14

where

A(r) =V (r)—-S(r) and

respectively,

2(r) =V (r)+S(r)

3.1. Spin symmetry.

The spin symmetry limit in the Dirac equation occur

_dA(r)

whe =0, A(r) =C,and 2(r) =V(r)

[7, 9]. Substituting the potential (Egn. (3)) and
approximation (Eqn. (4)) into (Eqn. (13)) and by
introducing a transformatioz = € >*", the second-

order differential equation (13) becomes

10

dzl:n,k(r)_i_ 1-z an,k(r) +T

15
dz* z1-2) dz (19)
1
T=————|AZ+Bz+C|F, (1) (15a)
(z(l—z))z[ ] )
where
d+bVv,+av,+M -E
A:ﬁ( 1 ag nk,s) (16)
da
B(d+2cV, +M-E, -bV,)
B= : +k(k+1) (@7
Y k+) @7
d+bV,+M - -aV,
o Bld+bv, u Ens ao), 8
BL=M+E, -C.. 19]

Now, to test the validity of approximation in Eq@),
we define the following function

f(r)=a’k(k+1)cscH @r ) (20)

Comparing Eg. (15) with Eq. (8), we deduce the

following

a,=a,=a,=1,a,=0,

1 1
ax :_5,0'6 :Z+A,a7:—A,
bV, —cV.
a, :l+'8(1—22)+k(k+1)’
4 a (21)
a, =1+2\/{; .a,= A,

a,=1+a,+2|a,,
1
ay, =\/Z—3,a’13 :_5(1"'\/73)_\/679

Substituting Eqgn. (21) in Egns. (9) and (10), the
positive energy and the upper component wave
function for the spin symmetry in the Dirac equatio
as
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n(n+1)+k(k+1) +7,6’(2/7—2avo) e

A 20 2
2n+1+ \/(1+ )+ 4'7'3

=E}.~M?+C (M —Enk,s)mo. (22)

0, =B(aVv,-d -bV,) +4k(k + D)o’

D1:{1+(2n+])\/(1+ 2()2+4;7—;8} . (22b)

(22a)

The upper component of the wave function is obthine

as

F.(2)= Nn’kzr (1-2)> S

(23)
xF}sz/Zz@ﬂ) (1— 22) .

where we have used the following for mathematical

simplicity /7 = bV, — CV,,.
3.2 Pseudospin symmetry limit

The pseudospin symmetry

limit occurs when
di(r)=0,2(r)=cpsand A(r) =V(r) =

potential in Eqn. (3) [7, 9]. With the potential (i
(3)), the approximation (Eqn. (4)) and the

transformatiorz = € 2", Eqn. (14) becomes

d’G -z dG
n,;(r) + 1-z n,k(r) +T,=0, (24)
dz z1-z) dz
where,
d+bVv,+av,+M -E
A.=_18:I.( 1 0 nk,ps) (25)

4a?

11

B =- ,@(ZCV +d 2'\:;Emps )+k(k—1)

-d-bV,-M +E, . +aV,
Cl — 181( 1 . nk,ps O) ' (27)
4a
181 =M - Enk ps + Cps (28)
1
T,=—"—| AZ+Bz+C |G ().  (29)
1 (Z(l— Z))Z I:Al Bl l} ,k( )

To avoid repetition of algebra, a first inspectionthe
relationship between the present set of parameters

(B;set) and the previoug SSet) enable us to know

that the negative solution for Eqn. (22) can baioieid
by using the parameter map

I:nk < Gnk ’

With these transformations and following the presio
work we obtain the relativistic energy spectrumtfer
pseudospin symmetry as

E2

nk, ps

n(n+1+21j—Da+(n+;ij
o n

~M?+C,, (Ey e ~M)+4k(k-1)a” =

nk, ps

2

1+2n+00, + 0
Dazz;l(/l—l)+%, (31)
= \/(1— 2k ——42'231 . (32)

The lower component wave function is obtain as

G (2)=N,, 2% (1-2) " P (1- 2) . (33
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_ 1 2u
O —2(\/53 ,\/ag+§j, (34) £ =&+ EE,E :aV0£,£=?
1 £, =e(e,+6,).6,=L((+Da®, | (39)
D:E(l-*' 531)_\109- (35) & =bV,-cV, &, =bV,+d,g, =E,,
3.3 Schrodinger equation with actual inverted
gener alized hyperbolic potential via For bound state, the possible solution to the Ricca
super symmetric approach. equation (38) satisfying the above condition is the

) ) ) _ _ super-potential function of the form [18-21]
Given the 3-dimensional Sditinger equation of the

form [16, 17]

W(r) =&, —&,cothar). (40)
_1 9.9 ] In order to make the left hand side of Eg. (40)
—2—r2—+ compatible to the right hand side, the following
ror o condition must be fulfilled:
7| 1 of.,0
——|——| g |+ |+V(r)-E |¢(r) =0, (36) |
ZiN Srﬁaaz 0 WA(r)-W (r) =&, csch’ @r )- &, coth@r )&,
1
| rP§r60g | (41)
g " " functi Then, the two constants in Eqn. (36) are deduce as
an setting e wave unction
R )., (6,9 follows
gl/(l’) =-n> 2 mi ™ we obtain the radial part
r & =&,(&,) +&5(€,), (42)
of the Schédinger equation by the separation of :
variables as
i (43)
&, = )
o 2u UG o2
?+?(En/ -V(r))- > R, (r)=0.(37)

1+ (14 2) + 4 (e, - 5,)

Substituting potential in Egn. (1) and the &=a , (44)
approximation in Eqgn. (2) into Egn. (37), we ob&ain 2
a differential equation of the form
dZqu(r) where £, > 0.We find the Hamiltonian of Eqn. (37)
a2 :[‘gﬁ csd? ar) &, cothiar )+$F3] Rmk(r)‘ as it is related to the super-potential functioa [#2-
26]
(38) dW(r

v, =we(r) £ 200 (45)

where dr

and the ground state wave functibh , (1) is simply
calculated from

Ug, (1) :exp(—IW r )dr) . (46)

12
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The two partner potential are given as

V. (r) =&+ +¢&,(e,+a)csah’ @r -1, (47)

V. (r)=& +&+¢&,(e,—a)csah’ @r )1 . (48)

[l =2¢&,¢, coth@r ). (49)

If the shape invariance condition is satisfied aiid
desirable results are obtained, then

V. (a,r)=V._(a,r)+R(@), (50)

where ajis a new set of parameters uniquely
determined from an old sef, via mapping of the

a - a,—a and
a, —» a,—Na where, & = @, as the residual term

form: subsequently

R(a,) is independent of the variable r. Substituting

for the parameters in Eqn. (42) one gets the energy

equation as
212 2z 2
En(:)(—ahEFN—ahESN, 51)
22U 2u
2
£ :(“Zﬂj | (52)
2
2uav, ?
hZ
Eq = : (53)
e (1+2n+x,)°
X=bV,+d, (54)
_ 2 8/,1(bvl _CVZ)
Xo =4/(1+20) e (55)
Special cases:

putting d =b=0,a=1,c=-1, the potential (1)
reduces to generalized version of the Eckart piaient

13

2
, ) 21N,
2
g, =-2" (ﬁj + L (56)
2U 2 a“ Xy
Xo =1+ 2n +\/(1+ 20)* +—8'L2N§ (57)
a‘h
Puting d=c=0,a=b=-1, the potential

(Eqn.(1)) turns to asymmetric trigonometric Rosen-
Morse potential

Vi, () =V, coth(@ r)-V, coth’ @r ), (58)

and Eqgn. (51) turns to

— a As2 /i
=V,-V,- + 59
s IR
8
Xep =1+ 2n+\/(1+ 20)* —az—";l/; . (60)

Taking € =0,the potential (Egn. (1)) becomes the

hyperbolical potential and the energy equation (Eqn
(51)) reduces to

Ve (1) =d —aV, coth(@ r)+bV, cotif &r )(61)

L (2, Y
a’h’ )(j e
=bV,+d - L2+ , (62
T, (2 x| |7
Xs3 =1+ 2n+\/%+(1+ 2)". (63)

Putting a=c=d =0, the potential (1) reduces to
symmetric trigonometric Rosen-Morse potential

Ve (1) = bV, coth’ @ar), (64)

and the energy equation (51) reduces to
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2
B/b\/l +( 1+ Z)2

s o I+2n+ >
EW:b\/l—ha2 ot .(65)
2u 2
Puttingp=c=d =0,a= (EJ a = (iJ :
2 2X
potential (Egn. (1)) becomes standard Hirth
potential
V, r
Vg, (r) ==-coth — |, 66
(== oot | )
and energy equation (51) reduces to
2 (2 Y
2
E, __ W% ((1+n+€)j M 67)
2 8u X 1+n+/

4, Results and discussion

The energy equation of some potential models are
obtained by varying the values of the real constant
potential (Eqn. (1)).

Generalized version of the Eckart potential: This is
obtained wherb=d =0

Asymmetric trigonometric Rosen-Morse potential:
This is obtained wheg =d =0.

Hyperbolical potential: This is obtained when

c=0.

Symmetric trigonometric Rosen-Morse potential: This
is obtained whea=c=d =0.

Sandard Hulthén potential: This is obtained when

b=c=d :O,a=1anda=i.
2 2Xx
In Tables 1 and 2, we numerically reported the gyner
eigenvalues of the inverted generalized hyperbolic
potential for spin and pseudospin symmetry
respectively. In Table 3, we presented numerical
results obtained from the two methods
(supersymmetric method and Nikiforov-Uvarov

method) with V,=10,a=0.2,V, =1.1,

14

V,=c=1,d =10 andb=1. In Tables 4 and 5, we

compared the present results with previous refults
hyperbolical and Eckart potentials, respectivelgain

be seen that our results agreed with the previous
results.

5. Conclusion

In this work, we obtained the solutions of Diraadan
Schidinger equations with actual and exponential
inverted generalized hyperbolic potential via
Nikiforov-Uvarov method and the supersymmetric
approach, respectively. We also obtained the soluti
of some known potential models by varying the
numerical values of the real constants in the iteeer
generalized hyperbolic potential model such as
generalized version of the Eckart potential,
asymmetric trigonometric Rosen-Morse potential,
standard Hultén potential, hyperbolical potential, and
symmetric trigonometric Rosen-Morse potential. To
test the accuracy of our results, we found the non-
relativistic limit of the spin symmetry and compdite
the numerical results and then compared the results
obtained from the non-relativistic Sékinger
equation. It is observed from the table that traulte
from the two methods are in excellent agreemei. It
also seen that the numerical results of the hypieddo
potential and the inverted generalized hyperbolic
potential are equal. The results of the Eckart e

is in good agreement with previous results. Thesagh
that our methods and results are efficient, effiectind
accurate.

Table 1: Bound states for the spin symmetry limit i
units of fm™for a=4, b=3, ¢=2, d=1,

M =1fni* C, =5fm™, \V,=5V, =1V, = 2. k=¢,

a =0.10.

) E o

1[0 21| op,, Op,, |*001774786
2 [0 32] od,,, 0d,, | 4004018067
3]0 -43]0f,, 0f,, |4007162883
47|70 54[ g, 0Og,, | 4011210254
1 [ 1 211p,, 1p,, | 4004032636
2|1 32|14, 1d,, | 4007014355
3|1 -43]1f, 1f, | 4011048661
4|1 84l 19 1g,, |4015983144
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Table 2: Bound states for the pseudospin symmetry
limit in units of fmfor a=4, b=3, c=2,
d=1,M =1fm™,C =-5fm™, =5,

Table 4. Comparison of energy eigenvalues for the
Inverted Generalized Hyperbolical potentiEA’G[H

and the Hyperbolical Potenti&r':f

V,=14,V,=2, k=/ anda =0.10
IGH H
state a En,( En,k 2]
2p | 010 | 261556 | 2.61556
[|n (| j) E 0.15 | 3.89823 | 3.89823
K ' ps.n.x 0.20 | 4.99062 | 4.99062
1 1, -1,2 1s,,, Od -3.996129126 3p | 010 |4.73223 | 473223
/22 77812 0.15 | 6.03829 | 6.03829
2 | L 23 1p,,, 0f,, | 3992989951 0.20 | 6.90394 | 6.90394
3 T 3419 0g 3988962108 3d 0.10 | 3.61747 | 3.61747
5120 VY772 0.15 | 5.27263 | 5.27263
4 1, -45) 1f oh, -3.984039485 0.20 | 6.43684 | 6.43684
71z 7302 4p | 010 |5.99969 | 5.99969
112 120 25 . 1d,, | 3993338541 015 |7.10812 | 7.10812
> 2. 23| 2p, 1f 3989750745 0.20 | 7.70634 | 7.70634
3120 1512 4d 0.10 | 5.32177 | 5.32177
3 2, 34| 2d_. 1g -3.984316427 0.15 | 6.71441 | 6.71441
5121 7972 0.20 | 7.50672 | 7.50672
4 2 A5 2f 1k, | 3978501386 4f | 0.10 | 467061 | 4.67061
0.15 | 6.38708 | 6.38708
0.20 | 7.35782 | 7.35782
50 | 010 |6.80027 | 6.80027
Table 3. Comparison between energy eigenvalues 5d 0.10 | 6.36810 | 6.36810
obtained from three different methods 5f 0.10 | 5.96159 | 5.96159
5g 0.10 | 5.59631 | 5.59631
6p | 0.10 | 7.32099 | 7.32099
state | @ ErI]G(H () ErI]G(H (SUSY) 2;1 8.10 7.03872 | 7.03872
’ ’ 10 | 6.77575 | 6.77575
0.10 2.615564041 | 2.615564041 6g 0.10 6.54204 6.54204
2p | 0.15 | 3.898299549 | 3.898299549
0.20 | 4.990620192 | 4.990620192
0.10 | 4.732230991 | 4.732230991 Table 5. Comparison of energy eigenvalues for the
3p | 0.15 6.038288185 | 6.038288185 Eckart Potential
0.20 | 6.903939477 | 6.903939477
0.10 | 3.617467056 | 3.617467056 state | 571 | present [27] [28]
3d | 0.15 | 5.272626079 | 5.272626079
0.20 | 6.436844393 | 6.436844393 2p g'ggg g'ggzgg‘z‘ g'égéggg g'éggggg
0.10 1 5.999694634 | 5.999694634 0.075 | 0.079890 | 0.088588 | 0.088880
4p | 0.15 | 7.108121333 | 7.108121333 35 0025 | 0038631 | 0.040311 | 0.040178
0.20 | 7.706342651 | 7.706342651 0050 | 0031674 | 0.032396 | 0.032454
0.10 | 5.321768060 | 5.321768060 0075 | 0023575 | 0.023773 | 0.023998
4d | 015 | 6.714411071 | 6.714411071 o 5025 T 0.040766 T 0.041475 | 0.04151
0.20 |7.506720486 | 7.506720486 0.050 | 0.031368 | 0.033211 | 0.032811
0.10 | 4.670610995 | 4.670610995 0075 | 0.022569 | 0.022964 | 0.024150
4f | 0.15 | 6.387083657 | 6.387083657 : : : :
020 | 7357818179 | 7357818179 4p | 0025 | 0.016712 | 0.018547 | 0.018514
0.050 | 0.009978 | 0.010855 | 0.010908
0.075 | 0.004521 | 0.004792 | 0.004874
4d 0.025 | 0.017716 | 0.018977 | 0.019076
0.050 | 0.010421 | 0.010686 | 0.011042
0.075 | 0.004364 | 0.004505 | 0.004924
4p | 0025 | 0.017331 | 0.018946 | 0.019331
0.050 | 0.010099 | 0.010219 | 0.011102
0.075 | 0.003697 | 0.003992 | 0.004946

15
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