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Abstract 

Using two different methods, we approximately solved the Dirac equation and the Schrӧdinger equation with an inverted 
generalized hyperbolic potential in actual and exponential form. By varying the values of parameters a, b, c and d, we obtained 
energy eigenvalues for some well-known potential models. We have shown the behavior of ground state energy withα for some 
potential models. A comparison of the numerical results shows an excellent agreement between the energy eigenvalues of the 
hyperbolical potential and the inverted generalized hyperbolic potential. 

 

   

1. Introduction 

The analytical solutions of both the relativistic and 
non-relativistic wave equations for some known 
physical potential models have been a great line of 
interest in several research areas in quantum 
mechanics due to their importance in quantum systems 
[1].  However, only a few of these potentials can 
explicitly be solved for all n  and l quantum numbers 
[2] for some special cases of interaction due to the 
presence of the inverse square term. The presence of 
the centrifugal term requires the use of approximation 
schemes. The most frequently used are the Pakeris 
approximation scheme [3] and the Greene-Aldrich 
approximation type [4]. Considering the effect of the 
relativistic wave equation with several potential fields, 
there are various works on the Dirac equation and the 
Klein-Gordon equation using approximation schemes. 
The Klein-Gordon equation is the equation of motion 
of a quantum scalar or pseudo-scalar field whose 
quanta are spin-less particles (pion) [5]. It describes 
the quantum amplitude for finding a point particle in 
various places. On the account of the Dirac equation, 
it describes the elementary spin - ½ particles such as 
electron consistent with both the particles of quantum 
mechanics and the theory of special relativity [6]. 
Dirac equation provides a theoretical justification for 
the interaction of several component wave functions in 
Pauli's phenomenological theory of spin. In the case of 
bound state solutions in this study, the Dirac equation 

is viewed under spin and pseudospin symmetry. The 
reliability of the pseudospin symmetry was analyzed 
by Marcos et al. [7] and they found that the nuclear 
surface strongly increases the effect of the pseudospin-
orbital potential. They also pointed out that the 
pseudospin symmetry cannot be justified by the 
smallness of the potential ( )r∑ but by the strong 

compensation of different contributions to the single-
particle energy of a nucleon in the Dirac equation [8]. 
Page et al. [9] however pointed out that the condition 
of the difference between the scalar potential and 
vector potential ( )r∆ results in the spin symmetry 

which is relevant to mesons.  

    The aim of this paper is to investigate the 
amendability of the inverted generalized hyperbolical 
potential with both the relativistic and non-relativistic 
wave equations in its actual form and its exponential 
form. Thus, in this study, we investigate the energy 
spectrum of both the Dirac equation and the 
Schrӧdinger equation in the framework of parametric 
Nikiforov-Uvarov method and the supersymmetric 
approach, respectively, with the actual and 
exponential inverted generalized hyperbolic potential. 
The inverted generalized hyperbolic potential in its 
actual form under consideration is given by [10] 
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                                                                                 (1)   

where, , ,a b c and d are real constants, 0 1,V V  and 

2V  are potential depth. By varying the magnitude of 

the real constants, we can easily obtain some known 
potential models as we shall see later. This potential is 
closely related to the real hyperbolical potential, 
asymmetric and symmetric Rosen-Morse potential. 
However, the potential (1) can be studied explicitly 
using the following approximation scheme                                                 
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which is a good approximation to the centrifugal term 
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 and it is valid for 1.α <<  The potential (Eqn. 

(1)) in its exponential form is 
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and the approximation (Eqn. (2)) in the form 
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≈                                                    (4) 

where we have used the following transformation                                        

( )sinh ,
2

r r

r
e eα α

α
−−=                                       (5)                                     

( )cosh .
2

r r

r
e eα α

α
−+=                                          (6)  

    The scheme of our work is as follows. In section 2, 
we briefly review the parametric Nikiforov-Uvarov 
method. In section 3, we obtained the bound state 
solutions for Dirac and Schrӧdinger equations. In 
section 4, we discussed the work and result while in 
the final section, we state the conclusion.    

 

2. Parametric Nikiforov-Uvarov method 

The method Nikiforov-Uvarov (NU) method is based 
upon reducing the second-order linear differential 
equation to a hyper-geometric type equation [11]. By 

introducing an appropriate coordinate transformation 

( ) ,s s x= one can write an equation of the form 

( ) ( )
( ) ( ) ( )

( ) ( )'' '
2

0,
s s

s s s
s s

τ σ
ψ ψ ψ

σ σ
+ + =       (7) 

where ( )sσ and ( )sσ  are polynomials of degree 

two at most, and ( )sτ is a polynomial of degree one 

at most. To use parametric Nikiforov-Uvarov method, 
Tezcan and Sever [12-15], we transformed Eq. (7) into 
the following form 
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                                                                                 (8)                                                          

According to the parametric Nikiforov-Uvarov 
method, the condition for eigenvalues and eigen-
functions are [12-15]  

 ( ) ( )2 5 8 32 1 1 2n n n nα α α α =− + + − +       

( ) ( )8 9 9 3 84 2 1 .nα α α α α− − + +              (9)  
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respectively, where 
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3. Dirac equation with exponential inverted 
generalized hyperbolic potential 

The Dirac equation for a spin-1/2 particle with mass 
M moving in the field of a repulsive vector and 
attractive scalar potentials (( )V r and ( ))S r in 

relativistic units ( 1)c = =h  is given as 

( )( ) ( )( ) ( ). 0,p M S r E V r rα β ψ + + − − = 
r r r

           (12) 

where  p i= − ∇
rr

 is the momentum operator, � denote 

the relativistic energy of the system, � and β are 

4 4×  usual Dirac matrices. The spin and pseudospin 
symmetry for the Dirac equation are given by 
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where  

( ) ( ) ( )r V r S r∆ = − and ( ) ( ) ( )r V r S r∑ = +  

respectively,  

3.1. Spin symmetry. 

The spin symmetry limit in the Dirac equation occurs 

when 0,
( )d r

dr
=∆

( ) sr C∆ = and ( ) ( )r V r∑ =  

[7, 9]. Substituting the potential (Eqn. (3)) and 
approximation (Eqn. (4)) into (Eqn. (13)) and by 

introducing a transformation 2 ,rz e α−=  the second-

order differential equation (13) becomes 

2
,k ,k
2 1
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Now, to test the validity of approximation in Eqn. (2), 
we define the following function 

2 2( ) ( 1)csch ( ).f r k k rα α= +                            (20) 

Comparing Eq. (15) with Eq. (8), we deduce the 

following                                                  
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Substituting Eqn. (21) in Eqns. (9) and (10), the 
positive energy and the upper component wave 
function for the spin symmetry in the Dirac equation 
as 
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The upper component of the wave function is obtained 

as 
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where we have used the following for mathematical 

simplicity 1 2.bV cVη = −  

3.2 Pseudospin symmetry limit 

The pseudospin symmetry limit occurs when 

0,
( )d r

dr
=∑

( ) psr C∑ = and ( ) ( )r V r∆ = =

potential in Eqn. (3) [7, 9]. With the potential (Eqn. 
(3)), the approximation (Eqn. (4)) and the 

transformation 2 rz e α−= , Eqn. (14) becomes 
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To avoid repetition of algebra, a first inspection for the 
relationship between the present set of parameters 

1( )setβ and the previous ( )setβ enable us to know 

that the negative solution for Eqn. (22) can be obtained 
by using the parameter map 

  ,nk nkF G↔  

With these transformations and following the previous 
work we obtain the relativistic energy spectrum for the 
pseudospin symmetry as 
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The lower component wave function is obtain as 
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2
1 ζ αℑ = + − .                                  (35) 

3.3 Schrӧdinger equation with actual inverted 
generalized hyperbolic potential via 

supersymmetric approach. 

Given the 3-dimensional Schrӧdinger equation of the 
form [16, 17] 

 

( ) ( )

2
2

2

2

2

2 2 2

1

1
0,

2

1

r
r r r

sin V r E
r sin

r sin

θ ψ
µ θ θ θ

θ φ

  ∂ ∂
 + 

∂ ∂  
  ∂ ∂ − + + − =   ∂ ∂   
  ∂
   ∂  

h
r  (36) 

and setting the wave function

( ) ( ) ( , )nl mlr Y

r

R θ φψ =r , we obtain the radial part 

of the Schrӧdinger equation by the separation of 
variables as 
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Substituting potential in Eqn. (1) and the 
approximation in Eqn. (2) into Eqn. (37), we obtained 
a differential equation of the form 
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For bound state, the possible solution to the Riccati 
equation (38) satisfying the above condition is the 
super-potential function of the form [18-21] 

 

4 3( ) coth( ).W r rε ε α= −                                      (40) 

In order to make the left hand side of Eq. (40) 
compatible to the right hand side, the following 
condition must be fulfilled: 
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Then, the two constants in Eqn. (36) are deduce as 
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where 4 0.ε > We find the Hamiltonian of Eqn. (37) 

as it is related to the super-potential function via [22-
26]  
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and the ground state wave function 0, ( )U r
l

is simply 

calculated from 
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The two partner potential are given as 
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If the shape invariance condition is satisfied and all 
desirable results are obtained, then 
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where 1a is a new set of parameters uniquely 

determined from an old set 0a  via mapping of the 

form: 1 0a a α→ −  and subsequently 

0na a nα→ −  where, 3 0aε =  as the residual term 

1( )R a  is independent of the variable r. Substituting 

for the parameters in Eqn. (42) one gets the energy 
equation as 
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Special cases: 

putting 0, 1, 1d b a c= = = = − , the potential (1) 

reduces to generalized version of the Eckart potential 
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Putting 0, 1,d c a b= = = = −  the potential 

(Eqn.(1)) turns to asymmetric trigonometric Rosen-
Morse potential 

2
0 1 o( ) coth( r) ( ),c thIGHV Vr V rα α−=           (58) 

and Eqn. (51) turns to  
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Taking 0,c = the potential (Eqn. (1)) becomes the 

hyperbolical potential and the energy equation (Eqn. 
(51)) reduces to 

0 1
2( ) coth( r) coth ( ),GVE r b rV d aV Vα α− += (61) 
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h
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Putting 0,a c d= = =  the potential (1) reduces to 

symmetric trigonometric Rosen-Morse potential 

1
2( ) coth ( ),GVEV r Vb rα=                                      (64) 

and the energy equation (51) reduces to 
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Putting
1 1

0, ,
2 2

b c d a
x
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= =


= , 

potential (Eqn. (1)) becomes standard Hulthẻn 

potential 
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 and energy equation (51) reduces to 
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4. Results and discussion 

The energy equation of some potential models are 
obtained by varying the values of the real constants in 
potential (Eqn. (1)). 

Generalized version of the Eckart potential: This is 
obtained   when 0b d= =  

Asymmetric trigonometric Rosen-Morse potential: 
This is obtained   when 0.c d= =  

Hyperbolical potential: This is obtained   when 
0.c =  

Symmetric trigonometric Rosen-Morse potential: This 
is obtained   when 0.a c d= = =  

Standard Hulthẻn potential: This is obtained   when  

0,b c d= = = 1

2
a = and .

2

1

x
α =  

In Tables 1 and 2, we numerically reported the energy 
eigenvalues of the inverted generalized hyperbolic 
potential for spin and pseudospin symmetry 
respectively. In Table 3, we presented numerical 
results obtained from the two methods 
(supersymmetric method and Nikiforov-Uvarov 

method) with 0 10,V = 0.2,a = 1 1.1,V =

2 1,V c= = 10d =  and 1b = . In Tables 4 and 5, we 

compared the present results with previous results for 
hyperbolical and Eckart potentials, respectively. It can 
be seen that our results agreed with the previous 
results. 

5. Conclusion 

In this work, we obtained the solutions of Dirac and 
Schrӧdinger equations with actual and exponential 
inverted generalized hyperbolic potential via 
Nikiforov-Uvarov method and the supersymmetric 
approach, respectively. We also obtained the solution 
of some known potential models by varying the 
numerical values of the real constants in the inverted 
generalized hyperbolic potential model such as 
generalized version of the Eckart potential, 
asymmetric trigonometric Rosen-Morse potential, 
standard Hulthẻn potential, hyperbolical potential, and 
symmetric trigonometric Rosen-Morse potential. To 
test the accuracy of our results, we found the non-
relativistic limit of the spin symmetry and computed 
the numerical results and then compared the results 
obtained from the non-relativistic Schrӧdinger 
equation. It is observed from the table that the result 
from the two methods are in excellent agreement. It is 
also seen that the numerical results of the hyperbolical 
potential and the inverted generalized hyperbolic 
potential are equal. The results of the Eckart potential 
is in good agreement with previous results. This shows 
that our methods and results are efficient, effective and 
accurate. 

Table 1: Bound states for the spin symmetry limit in 

units of 1fm− for 4,a =  3,b =  2,c =  1,d =
11M fm−= 1,5sC fm−= 0 5,V = 1 1,V = 2 2V = ,k =l,

0.10α = . 

 

  l  n ,     κ       ( ),l j    , ,s nE κ  

 1  0,    -2,1 
3/20p , 1/20p  4.001774786 

 2  0,    -3,2 
5/20d , 3/20d  4.004018067 

 3  0,    -4,3 
7/20 f , 5/20 f  4.007162883 

 4  0,    -5,4 
9/20g , 7/20g  4.011210254 

 1  1,    -2,1 
3/21p , 1/21p  4.004032636 

 2  1,    -3,2 
5/21d , 3/21d  4.007014355 

 3  1,    -4,3 
7/21f , 5/21f  4.011048661 

 4  1,    -5,4 
9/21g , 7/21g  4.015983144 
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Table 2: Bound states for the pseudospin symmetry 

limit in units of 1fm− for 4,a =  3,b =  2,c =  

1,d = 11M fm−= , 15psC fm−= − , 0 5,V =

1 1,V = 2 2,V =  k = l  and 0.10α =  

 

 l%  
n ,     
κ    

     ( ),l j       , ,ps nE κ  

1  1,   -1,2 
1/21s , 3/20d  -3.996129126 

2  1,   -2,3 
3/21p , 5/20 f  -3.992989951 

3  1,   -3,4 
5/21d , 7/20g  -3.988962108 

4  1,   -4,5 
7/21f , 9/20h  -3.984039485 

1  2,   -1,2 
1/22s , 3/21d  -3.993338541 

2  2,   -2,3 
3/22p , 5/21f  -3.989250745 

3  2,   -3,4 
5/22d , 7/21g  -3.984316427 

4  2,   -4,5 
7/22 f , 9/21h  -3.978501386 

 

 
Table 3. Comparison between energy eigenvalues 
obtained from three different methods 
 
                           

state  α  
,

IGH
nE
l

(NU)   ,
IGH
nE
l

(SUSY) 

 

    2p 

0.10 

0.15 

0.20 

2.615564041 

3.898299549 

4.990620192 

2.615564041 

3.898299549 

4.990620192 

  

    3p 

 

0.10 

0.15 

0.20 

4.732230991 

6.038288185 

6.903939477 

4.732230991 

6.038288185 

6.903939477 

 

    3d 

0.10 

0.15 

0.20 

3.617467056 

5.272626079 

6.436844393 

3.617467056 

5.272626079 

6.436844393 

 

    4p 

0.10 

0.15 

0.20 

5.999694634 

7.108121333 

7.706342651 

5.999694634 

7.108121333 

7.706342651 

 

    4d 

0.10 

0.15 

0.20 

5.321768060 

6.714411071 

7.506720486 

5.321768060 

6.714411071 

7.506720486 

 

    4f 

0.10 

0.15 

0.20 

4.670610995 

6.387083657 

7.357818179 

4.670610995 

6.387083657 

7.357818179 

 

 
 
 
 

Table 4. Comparison of energy eigenvalues for the 

Inverted Generalized Hyperbolical potential ,
IGH
nE
l

 

and the Hyperbolical Potential ,
H
nE
l

  

 
state     α  

,
IGH
nE
l

 ,
H
nE
l

 [2] 

2p 0.10 

0.15 

0.20 

2.61556 

3.89823 

4.99062 

2.61556 

3.89823 

4.99062 

3p 0.10 

0.15 

0.20 

4.73223 

6.03829 

6.90394 

4.73223 

6.03829 

6.90394 

3d 0.10 

0.15 

0.20 

3.61747 

5.27263 

6.43684 

3.61747 

5.27263 

6.43684 

4p 0.10 

0.15 

0.20 

5.99969 

7.10812 

7.70634 

5.99969 

7.10812 

7.70634 

4d 0.10 

0.15 

0.20 

5.32177 

6.71441 

7.50672 

5.32177 

6.71441 

7.50672 

4f 0.10 

0.15 

0.20 

4.67061 

6.38708 

7.35782 

4.67061 

6.38708 

7.35782 

5p 0.10 6.80027 6.80027 

5d 0.10 6.36810 6.36810 

5f 0.10 5.96159 5.96159 

5g 0.10 5.59631 5.59631 

6p 0.10 7.32099 7.32099 

6d 0.10 7.03872 7.03872 

6f 0.10 6.77575 6.77575 

6g 0.10 6.54204 6.54204 

 

Table 5. Comparison of energy eigenvalues for the 
Eckart Potential    
 

state   
   

1α −
  

  present         [27]     [28] 

2p 0.025 

0.050 

0.075 

0.099994 

0.096722 

0.079890 

0.101594 

0.098298 

0.088588 

0.100888 

0.098050 

0.088880 

3p 0.025 

0.050 

0.075 

0.038631 

0.031674 

0.023575 

0.040311 

0.032396 

0.023773 

0.040178 

0.032454 

0.023998 

3d 0.025 

0.050 

0.075 

0.040766 

0.031368 

0.022569 

0.041479 

0.033211 

0.022964 

0.041519 

0.032811 

0.024150 

4p 0.025 

0.050 

0.075 

0.016712 

0.009978 

0.004521 

0.018547 

0.010855 

0.004792 

0.018514 

0.010908 

0.004874 

4d 0.025 

0.050 

0.075 

0.017716 

0.010421 

0.004364 

0.018977 

0.010686 

0.004505 

0.019076 

0.011042 

0.004924 

4p 0.025 

0.050 

0.075 

0.017331 

0.010099 

0.003697 

0.018946 

0.010219 

0.003992 

0.019331 

0.011102 

0.004946 
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