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In this paper, we present further results of our investigation for the exact solvability of relativistic quantum systems with 
modified pseudo-harmonic (M.P.H.) potential for spin-1/2 particles by of means Bopp’s shift method instead of solving 
deformed Dirac equation with star product, in the framework of noncommutative 3-dimensional real space (NC: 3D-RS) 

symmetries. The exact corrections for excited thn  states are found straightforwardly for interactions in one-electron atoms 
by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on two 
infinitesimal parameter Θ  andχ which are induced by position-position noncommutativity, in addition to the discreet 

atomic quantum numbers: ( ) ( )llsllj
~

,2/1,2/1
~

±=±=  and m~  ( m ) (angular momentum quantum numbers). We have also 

shown that the usual states in ordinary three dimensional spaces are canceled and replaced by new degenerated ( )1
~

22 +l  and 

( )122 +l  sub-states under the pseudo spin symmetry and spin symmetry conditions respectively in the new quantum 
symmetries of (NC: 3D-RS). 
 
 
 

1.     Introduction 

Recently, the exact analytical solutions of 
Schrödinger (for fermions with spin ½) Klein-
Gordon equation (for bosons with spin zero) and 
Dirac (fermionic particle and anti-particle with spin 
½) equations for some physical central and non-
central potentials were shown to be essential 
because the knowledge of wave functions and 
energy contains all possible important information 
of the physical properties of quantum system for 
both nonrelativistic and relativistic quantum 
mechanics [1-41]. The quantum algebraic structure 
based on the ordinary canonical commutations 
relations (CCRs) in both Schrödinger and 
Heisenberg (operators are depended on time) 
pictures, respectively, (in 1== hc  units) as 
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Where the two operators ( ) ( )( )tptx ii ,  in 

Heisenberg picture are related to the corresponding 
two operators ( )ii px ,  in Schrödinger picture from 

the two projections relations, respectively [61] as 
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Here phĤ  denote to the ordinary quantum 

Hamiltonian operator for pseudo-harmonic 
potential. H. Snyder was the first to introduce the 
noncommutativity idea for almost seventy years 
ago [42] and very recently the non-commutative 
geometry played an important role in modern 
physics and has sustained great interest [43-76]. 
The new quantum structure of noncommutative 
space based on the following noncommutative 
canonical commutations relations (NCCRs) in both 
Schrödinger and Heisenberg pictures, respectively, 
as follows [43-73] 
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Where the two new operators  ( ) ( )( )tptx ii ˆ,ˆ in 

Heisenberg picture are related to the corresponding 
two new operators ( )ii px ˆ,ˆ  in Schrödinger picture 
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from the two projections relations, respectively 
[61] as 
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Here, phncH −
ˆ  denote to the new quantum 

Hamiltonian operator in the symmetries of (NC: 

3D-RS). µνθ has very small parameters  (compared 
to the energy) that are elements of antisymmetric 
real matrix and ( )∗  denotes the new star product, 

which is generalized between two arbitrary 

functions ( ) ( )xfxf ˆˆ → and ( ) ( )xgxg ˆˆ→ to 

( ) ( ) ( )( )xgfxgxf ∗≡ˆˆˆˆ  instead of the usual product 

( )( )xfg  in ordinary three dimensional spaces [43-

57] 
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Where ( )xf ˆˆ  and ( )xg ˆˆ  are the new functions in 

(NC: 3D-RS), ( )xfx
µ∂  denotes 

( )
µx

xf

∂
∂

and the 

following term ( ( ) ( )xgxf
i xx

νµ
µνθ ∂∂−

2
) is induced 

by (space-space) noncommutativity properties and 

( )2θO  stands for the second and higher order terms 

of θ . The Bopp’s shift method can be used, instead 
of solving any quantum systems by using directly 
star product procedure [43-65] 
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The three-generalized coordinates 
( )321 ˆˆ,ˆˆ,ˆˆ xzxyxx ===  in the noncommutative 

space are depended on corresponding three-usual 
generalized positions ( )zyx ,,  and momentum 

coordinates ( )zyx ppp ,,  by the following 

relations, as follows [61] 
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The non-vanishing commutators in (NC-3D: 
RS) can be determined as follows  
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which allow us to getting the operator 2r̂  on 
noncommutative three dimensional spaces as 
follows [47,61,63,65]: 
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, in particular, the pseudo-

harmonic potentials have the general features of the 
true interaction energy, inter atomic and dynamical 
properties in solid-state physics and play an 
important role in the history of molecular structures 
and interactions; this potential is considered as an 
intermediate between harmonic oscillator and 
Morse-type potentials which are more realistic 
anharmonic potentials. Furthermore, the pseudo-
harmonic potential is extensively used to describe 
the bound state of the interaction systems, and has 
been applied for both classical and modern physics 
[40]. This work is aimed at obtaining an analytic 
expression for the eigenenergies of a modified 
pseudoharmonic potential (M.P.H.), the potential in 
(NC: 3D-RS) symmetries using the generalization 
of Bopp’s shift method to discover the new 
symmetries and a possibility to obtain another 
application to this potential in different fields. This 
work is based essentially on our previous works 
[43-65] and it was considered in our work [65] in 
the case of nonrelativistic case. The organization 
scheme is given as follows. In the next section, we 
briefly review the Dirac equation with 
pseudoharmonic potential on based to Ref. [41]. 
Sec. 3 is devoted to studying the three deformed 
Dirac equation by applying Bopp's shift method. In 
the fourth section by applying standard 
perturbation theory we find the quantum spectrum 

of the thn  excited states in (NC-3D: RS) for 
relativistic spin-orbital interaction. In the next 
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section, we derive the magnetic spectrum for the 
studied potential. In the Sec. 6, we resume the 
global spectrum and corresponding 
noncommutative Hamiltonian for (M.P.H.) 
potential. Finally, the important results and the 
conclusions are discussed in last section. 
 
2.     Review of the Dirac Equation for Pseudo-

harmonic Potential 

In this section, we shall review the eigenfunctions 
and eigenvalues for spherically symmetric for the 
pseudoharmonic potential ( )rV  for the spin 

symmetric case and the pseudo-spin spin-symmetry 
[41]:  
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Where, 0D  and 0r  are constant related to the 

dissociation energy of a molecule and an 
equilibrium distance, respectively, while 

,2
00
−= rDa 2

00
+= rDb  and 02Dc −= . The Dirac 

equation in the presence of above interaction is 
given by [41] 
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and are 22×  three Pauli matrices, thus the 

ordinary Hamiltonian operator phH 0
ˆ  can ban be 

expressed as 
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The spinor ( )ϕθ ,,rΨ  can be written as [41] 
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Where, ( )rFnk  and ( )rG

kn
~  are the upper and 

lower components of the Dirac spinors, ( )ϕθ ,l
jmY  

and ( )ϕθ ,
~
l
jmY  are the spin and pseudo-spin 

spherical harmonics while k  ( k
~

) is related to the 
total angular momentum quantum numbers for spin 
symmetry l  and p-spin symmetry l

~  as [38,39,41] 
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and  
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The radial functions ( ( )rFnk , ( )rGnk ) are obtained 

by solving the following differential equations [41] 
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The bound state solutions of the pseudo-harmonic 
potential for the spin symmetric case obtained in 

the exact spin symmetry 
( )

0=∆
dr

rd
 and then the 

energy eigenvalues depend on n  and l . According 
to the Laplace transform approach (LTA) and 
asymptotic interaction method, which was applied 
in Refs. [41], the upper component ( )rFnk  of the 

Dirac spinors are 
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Where, N and ( )rnF εγ 1,22,11 +−  are the 

normalization constant and the confluent hyper-
geometric functions, the relativistic positive energy 
eigenvalues with the pseudo-harmonic potential 
under the spin-symmetry condition are obtained as 
[41] 
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...2,1,0=n In the exact pseudo-spin symmetric 

case, the lower ( )rGnk  component of the Dirac 

spinors [40] 
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 denote to the 

normalization constant and the relativistic negative 
energy eigenvalues with the pseudoharmonic 
potential under the pseudo-spin spin-symmetry 
condition is obtained as [41] 
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The generalized Laguerre polynomials ( )( )xL p

n  can 

be expressed as a function of the confluent hyper-
geometric functions as 
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Which allow us to rewrite the upper component 

( )rFnk  and the lower ( )rGnk  component of the 

Dirac spinors for the spin symmetric case and the 
pseudo-spin spin-symmetry, respectively, as  
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3.     Noncommutative relativistic Hamiltonian 
operator for (M.P.H.) potential 

3.1.     Formalism of Bopp’s shift method 

Now, we shall review some fundamental principles 
of the quantum noncommutative Dirac equation, 
which resumed in the following steps for modified 
pseudo-harmonic potential ( )rV ˆ  [47,61,63,65] as 

- Ordinary Hamiltonian ( )ii xpH ,ˆ  replaced by 

noncommutative Hamiltonian ( )ii xpH ˆ,ˆˆ , 

- Ordinary spinor ( )rΨ  replaced by new spinor 

( )r
))

Ψ , 

- Ordinary energy E replaced by new energy 

phncE − , and ordinary product replaced by new star 

product∗ .  

These previous steps allow us to write the new 
noncommutative Dirac equation for modified 
pseudo-harmonic potential as follows  
 

( ) ( ) ( )rErxpH phncii
))))

Ψ=Ψ∗ −ˆ,ˆˆ            (26) 

 
It is worth emphasizing that the Bopp’s shift 
method permutes to reduce the above equation to 
simplest their form 
 

( ) ( ) ( )rErxpH phnciiphnc
rr ψψ −− =ˆ,ˆ        (27) 

 
Where, ( )r

rψ  is a solution of the Dirac equation 

and the new operator of Hamiltonian 
( )iiphnc xpH ˆ,ˆ−  can be expressed in three general 

varieties: both noncommutative space and 
noncommutative phase (NC-3D: RSP), only 
noncommutative space (NC-3D: RS) and only 
noncommutative phase (NC: 3D-RP), respectively, 
[65] as 
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In a recent work, we were interested in the above 
second variety and then the new modified 
Hamiltonian ( )iiphnc xpH ˆ,ˆ−  defined as a function 

of jijii pxx θ
2

1
ˆ −=  and ii pp =ˆ : 
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Where the modified pseudo-harmonic 
potential ( )rV ˆ  is given by 
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The Dirac equation in the presence of above 
interaction ( )rV ˆ  can be rewritten according 

Boopp’s shift method as follows 
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The radial functions ( ( )rFnk , ( )rGnk ) are obtained, 

in the absence of tensor interaction, by solving two 
equations 
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eliminating ( )rFnk  and ( )rGnk  from Eqns. (34) 

and (35), we can obtain the following two 
Schrödinger-like differential equations as follows 
with (NC-3D: RS) symmetries as 
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After straightforward calculations, one can obtain 
the two terms in (NC-3D: RS) spaces as follows 
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Which allows us to write the modified pseudo-
harmonic potential ( )rV ˆ  as follows 
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It is clearly that the star product inducing the non-
commutativity is replaced by the usual product plus 

non local corrections ( )barV phpert ,,,1̂ Θ−  and 

( )barV phpert ,,,ˆ
2 Θ−  in the scalar potential ( )rV ˆ . 

This allows writing the modified Dirac equation in 
the non-commutative case as an equation similarly 
to the usual Dirac equation of the commutative 
type with a non local potential. Furthermore, using 
the unit step function (also known as the Heaviside 
step function or simply the theta function) we can 
rewrite the modified pseudoharmonic potential to 
the following form 
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We generalized the constraint for the pseudospin 
(p-spin) symmetry ( ( ) ( )rVr =∆  and 

( ) constants==Σ psCr  which presented in Refs. 

[38,39,40] into the new form ( ) ( )rVr ˆˆ =∆  and 

( ) constantsˆˆ ==Σ psCr  in (NC-3D: RS) and 

inserting the potential ( )rV ˆ  in Eqn. (41) into the 
two Schrödinger-like differential Eqns. (36) and 
(37), one obtains 
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and two similarly equations obtained by LL
~rr

→ . 
It’s clearly that, the additive new parts 

( )barV phpert ,,,1̂ Θ−  and ( )barV phpert ,,,ˆ
2 Θ−  are 

proportional with infinitesimal parameterΘ , thus, 
we can considered as a perturbations terms. Our 
aim is to derive the energy spectrum for a moving 
charged particle in the presence of a potential given 
by (41) analytically in a very simple way. 

4.     The exact relativistic spin-orbital 
Hamiltonian and corresponding spectrum for 
(M.P.H.) Potential in (NC: 3D- RS) symmetries 

for excited thn  states for one-electron atoms 

4.1.     The exact relativistic spin-orbital 
Hamiltonian for (M.P.H.) potential in ( NC: 3D- 

RS) symmetries for one-electron atoms 
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Furthermore, the above perturbative terms  

( )barV phpert ,,,1̂ Θ−  and ( )barV phpert ,,,ˆ
2 Θ−  can be 

rewritten in the following new equivalent form for 
(M.P.H.) potential 
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To the best of our knowledge, we just replaced 

the coupling spin-orbital (p-spin-orbital) LS  and 
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S  by the two expressions: 
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follows [36,37] 
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and 
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With ( ) ( )1
~~

1
~~

+=− llkk  and ( ) ( )11 +=− llkk , 

which allows us to form two diagonal ( )33×  

matrixes ( )21,ˆ kkH phso−  and ( )21
~

,
~~̂

kkH phso− , for 

(M.P.H.) potential, respectively, in (NC: 3D-RS) 
symmetries as  
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and 
 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) 0ˆ

0kspin  unaligned ,
2

1
 ,,,p,

2

1
    if

    
2

ˆ

0kspin  aligned ,
2

1
 ,,,s,1/2j-     if

   
2

ˆ

33

2/31/2

342222

2/31/2

341111

=

〉−=






 +=








 −Θ=

〈+=+








 −Θ=

−

−

−

phso

phso

phso

H

ljetcdlj

r

b

r

a
kkH

ljetcp

r

b

r

a
kkH

 (50) 

4.2.     The exact relativistic spin-orbital 
spectrum for (M.P.H.) potential symmetries for 

thn  states for one-electron atoms in (NC: 3D- 
RSP) symmetry 

In this subsection, we are going to study the 
modifications to the energy levels 

( ( )1:
~

,kE dpernc Θ− , ( )2:
~

,kE upernc Θ− ) for ( ( )1/2j- + , 

( )etcp ,,s 2/31/2 ,
2

1~
+= lj , aligned spin 0k〈  and 

spin-down) and (
2

1~
 += lj , 

( )etcd ,,p 2/31/2 ,
2

1~
−= lj , an aligned spin 0k〉  

and spin up), respectively, in first order of 

infinitesimal parameterΘ , for excited statesthn , 
for the spin symmetric case and the pseudo-spin 
spin-symmetry obtained by applying the standard 
perturbation theory, using Eqns. (24), (25) and (40) 
as 
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θθ

ϕθθθϕθ

 (51) 
 
The first part represent the modifications to the 
energy levels for the spin symmetric cases while 
the second part represent the modifications to the 

energy levels ( ( )1:
~

,kE dpernc Θ− , ( )2:
~

,kE upernc Θ− ) for 

the pseudo-spin spin-symmetry, then we have 
explicitly 
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Using Eqns. (25), (52) and (23), an explicit 
expression for the modified energy eigenvalues 

( ( )1:

~
,kE dpernc Θ− , ( )2:

~
,kE upernc Θ− ) of the Dirac 

equation with the modified pseudo-harmonic 
potential under the pseudo spin symmetry 
conditions obtained as 
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Now defining the new variable 2rX =  and the 
function we get 
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A direct simplification gives 
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Where, the four terms ( )nrDT ph ,,, 1001 ν− , 

( )nrDT ph ,,, 1002 ν− , ( )nrDL ph ,,, 2001 ν−  and 

( )nrDL ph ,,, 2002 ν−  are given by, respectively, as 
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Now we apply the special integral [77] 
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which allow us to obtaining  
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and 



The African Review of Physics (2017) 12: 0018 
 

138 
 

( )
( )

( )
0

2

3

2

2

1
11

1

112
00

1002

111

;
2

3
;

2

1
1,

2

2

3
!!

2

3

2
,,,

=

+

+

−













































−

+
−

+















 +Γ








 ++ΓΓ
−=

h

n

n

ph

Bh

B

A
F

dh

d

nn

n
rD

nrDT

νν

ννν

ν

νν
ν

… 

 (63) 
 
Here 
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and 
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 (65) 
 

Where, ( ) ( ) 2
002222 )1

~
(

~
1 rDCEMkk −+++=+νν . 

Substituting Eqns. (64) and (65) and (62) and (63)  
into Eqns. (58) and (59), respectively, we obtain 
the modifications to the energy levels 

( ( )1:
~

,kE dpernc Θ− , ( )2:
~

,kE upernc Θ− ) produced by 

relativistic spin-orbital effect under the pseudo spin 
symmetry conditions. Knowing the energy levels 

( ( )1: ,kE dpernc Θ− , ( )2: ,kE upernc Θ− ) produced by 

relativistic spin-orbital effect under the spin 
symmetry conditions, it can be determined by 
means of same procedures as before and avoid 
repetition we just make the following steps 
 

( ) ( )phncphnc EEkkkkNN −− −→−→→→ θθ   and   
~

,
~

,
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2211

 (66) 
 
Which implies that   
( ( )1: ,kE dpernc Θ− , ( )2: ,kE upernc Θ− ) can be 

expressed, respectively, as 
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The negative and positive signs of the coefficients  

( )phncE −−θ  and ( )phncE −θ  are necessary to ensure 

that the modifications to the energy levels under 
the pseudo spin symmetry conditions and spin 
symmetry conditions are negative and positive, 
respectively. 

4.3.     The exact relativistic magnetic spectrum 
for (M.P.H.) potential for excited  thn  states for 
one-electron atoms in (NC: 3D- R S) symmetries 

Having obtained the exact modifications to the 

energy levels ( ( )1:
~

,kE dpernc Θ− , ( )2:
~

,kE upernc Θ− ) 

and ( ( )1: ,kE dpernc Θ− , ( )2: ,kE upernc Θ− ) under the 

pseudo spin symmetry conditions and spin 

symmetry conditions, respectively, for exited thn  
states, produced by noncommutative spin-orbital 
Hamiltonian operator, we now consider another 
interested physically meaningful phenomena, 
which is also produced from the perturbative terms 
of pseudoharmonic potential related to the 
influence of an external uniform magnetic field, it’s 
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sufficient to apply the following two replacements 
to describing these phenomena 
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Here χ  is infinitesimal real proportional’s 

constants, and we choose the magnetic field 

kBB = , which allow us to introduce the modified 

new magnetic Hamiltonian ( )χ,,,ˆ barH mtmag−  in 

(NC: 3D-RS), as:  
 

( )

























−









−

=
+−

+−

−

symmetry spin  for

      
2

symmetry spin  pseudofor

     
~

 
2

,,ˆ

3

2
0

4

2
0

0

3

2
0

4

2
0

0

00

LB
r

r

r

r
D

LB
r

r

r

r
D

rDH phmag

χ

χ

χ   

 (70) 
 

Here ( )BS−  denote to the ordinary Hamiltonian of 
Zeeman Effect. To obtain the exact 
noncommutative magnetic modifications of energy 

( )00ph-mag ,,~,, rDmnE χ  and  

( )00ph-mag ,,,, rDmnE χ  for modified pseudo-

harmonic potential, under the pseudo spin 
symmetry conditions and spin symmetry 
conditions, respectively, which is produced 

automatically by the effect of ( )χ,,,ˆ
00 rDrH phm− , 

we make the following two simultaneously 
replacements 
 

B        and    m ,    m~
~

11 χ→Θ→→ kk      (71) 

 
Then, the relativistic magnetic modification 

( )00ph-mag ,,~,, rDmnE χ  and 

( )00ph-mag ,,,, rDmnE χ  corresponding thn  excited 

states, in (NC-3D: RS) symmetries can be 
determined from the following relation 
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and 
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Where, m~  and mdenote to the angular momentum 

quantum numbers lml
~~~

+≤≤−  and lml +≤≤− , 

which allows us to fixing ( 1
~

2 +l ) and ( )12 +l  

values, respectively.  

5.     The exact modified global spectrum for 
(M.P.H.) potential in (NC-3D: RS) symmetries 

for one-electron atoms 

Let us now resume the thn  excited states eigen-

energies ( ( )001 ,,~,,,
~

, DrmnkE pdnc χΘ− ,  

( )002: ,,~,,,
~

, DrmnkE upnc χΘ− ) and  

( ( )001 ,,,,,, DrmnkE dnc χΘ− , ( )002 ,,,,,, DrmnkE uncr χΘ− ) 

of modified Dirac equation corresponding to 
pseudo spin symmetry conditions and spin 
symmetry conditions, respectively, in the first order 
of parameter Θ , for (M.P.H.) potential in (NC: 
3D-RS) symmetries based to obtained new results 
Eqns. (58), (59), (67), (68), (72) and (73), in 
addition to the original results Eqns. (20) and (22) 
of energies in commutative space, we obtain the 
following original results 
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Now, it is important to construct Hamiltonian 

operator phncH −
ˆ  for (M.P.H.) potential based on 

previously obtained results. Naturally, to consider 
the first term in the modified Hamiltonian operator  
represents the kinetic energy and the potential 

energy  in ordinary commutative space phH 0
ˆ  of 

the fermionic particle that was presented by Eqn. 

(14), the second term ( )21,ˆ kkH phso−  or 

( )21
~

,
~~̂

kkH phso−  represents the induced spin-orbital 

parts for the pseudo spin symmetry conditions and 
spin symmetry, and the last term  is the modified 

new magnetic Hamiltonian ( )χ,,,ˆ barH mtmag−  
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In this way, one can obtain the complete energy 
spectra for (M.P.H.) potential in (NC: 3D-RS) 
symmetries.  Know the following accompanying 
constraint relations: 

• The original spectrum contains two possible 
values of energies in ordinary three 
dimensional space which represented by Eqns. 
(13) and (47). 

As mentioned in the previous subsection, the 
quantum numbers m~  and m  satisfied the two 

intervals: lml
~~~

+≤≤−  and lml +≤≤− , thus we 

have ( 1
~

2 +l ) and ( )12 +l  values, respectively.  

• We have also two values for (
2

1~
+= lj  and 

2

1~
−= lj ) and (

2

1+= lj  and
2

1−= lj ) for 

pseudo spin symmetry conditions and spin 
symmetry. 

Allow us to deduce the important original results: 
every state in usually three dimensional space will 

be replaced by ( )1
~

22 +l  and ( )122 +l sub-states 

and then the degenerated state can take 

( ) 2
1

0

2122 nl
n

i

≡+∑
−

=
values in (NC: 3D-RS) 

symmetries. Finally, we resume our original results 
in this article, the first one is the induced 
pseudospin-orbital and spin-orbital Hamiltonian 

operators ( ( )21
~

,
~~̂

kkH phso−  and ( )21,ˆ kkH phso− )  

and corresponding eigenvalues  

( ( )1:
~

,kE dpernc Θ− , ( )2:
~

,kE upernc Θ− ) and  

( ( )1: , kE dpernc Θ− , ( )2: ,kE upernc Θ− ), respectively as 
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and 
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The second original result is the induced 
modified new magnetic Hamiltonian operator 

( )χ,,,ˆ barH mtmag−  and corresponding eigenvalues 

( )00ph-mag ,,~,, rDmnE χ  and  

( )00ph-mag ,,,, rDmnE χ  are respectively as 
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It is worth mentioning that in the limit 0→Θ  we 
obtain the commutative result. 

6.     Concluding Remarks 

In this study, we have computed the exact 
analytical bound state solutions, the energy spectra 
and the corresponding noncommutative Hermitian 
Hamiltonian operator for three dimensional Dirac 
equations in spherical coordinates for (M.P.H.) 
potential by using generalization Boopp’s Shift 
method and standard perturbation theory. It is 
found that the energy eigenvalues depend on the 

dimensionality of the problem and new atomic 
quantum numbers  

( )llsljlj
~

,,2/1~,2/1,2/1
~

±=±=±=  and the angular 

momentum quantum number in addition to the 
infinitesimal parameterΘ in the symmetries of 
(NC: 3D-RSP). We also showed that the obtained 
energy spectra is degenerate and every old state 

will be replaced by ( )1
~

22 +l  and ( )122 +l  sub-

states under the pseudo spin symmetry conditions 
and spin symmetry conditions, respectively, for 

exited thn  states. In the limit when 0→Θ , we 
recover the ordinary results of commutative space. 
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