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In this paper, we present further results of ouegtigation for the exact solvability of relativisguantum systems with
modified pseudo-harmonic (M.P.H.) potential forrsfii2 particles by of means Bopp’s shift methodead of solving
deformed Dirac equation with star product, in thenfework of noncommutative 3-dimensional real spat@: 3D-RS)
symmetries. The exact corrections for excitédl states are found straightforwardly for interacsion one-electron atoms
by means of the standard perturbation theory. Eurtbre, the obtained corrections of energies aperdted on two
infinitesimal paramete® andy which are induced by position-position noncommutggti in addition to the discreet

atomic quantum numberg:= F(|)¢ 1/2,s= 11/2,|~(|) and m (m) (angular momentum quantum numbers). We have also

shown that the usual states in ordinary three démo@al spaces are canceled and replaced by nevmdegedz(zrﬂ) and
2(2| +1) sub-states under the pseudo spin symmetry and sspmmetry conditions respectively in the new quamtu

symmetries of (NC: 3D-RS).

1. Introduction

Recently, the exact analytical solutions of
Schrodinger (for fermions with spin %) Klein-
Gordon equation (for bosons with spin zero) and
Dirac (fermionic particle and anti-particle withisp
%) equations for some physical central and non-
central potentials were shown to be essential
because the knowledge of wave functions and
energy contains all possible important information
of the physical properties of quantum system for
both nonrelativistic and relativistic quantum
mechanics [1-41]. The quantum algebraic structure
based on the ordinary canonical commutations
relations (CCRs) in both Schrodinger and
Heisenberg (operators are depended on time)
pictures, respectively, (m=7% =1 units) as

{[Xiipjjﬂdij and |x,x|=|p,p,]=0
[‘ (t) p; (t)] =i¢; and [>§ (t) x, (t)] = [p, (t) p, (t)] =0
@

Where the two operators(x(t), p(t) in

Heisenberg picture are related to the corresponding
two operatorsx;, p;) in Schrodinger picture from

the two projections relations, respectively [61] as
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x, (t) = exp(H ph(t ~to))x; exp(-iH ph(t ~to))
p, (t) = exp(H ph(t ~to)) p; exp(-iH ph(t ~to))

Here ﬁph denote to the ordinary quantum

Hamiltonian  operator for pseudo-harmonic

potential. H. Snyder was the first to introduce the
noncommutativity idea for almost seventy years
ago [42] and very recently the non-commutative
geometry played an important role in modern

physics and has sustained great interest [43-76].
The new quantum structure of noncommutative
space based on the following noncommutative
canonical commutations relations (NCCRs) in both
Schrédinger and Heisenberg pictures, respectively,
as follows [43-73]

Where the two new operators(% (t), ; (t) in

Heisenberg picture are related to the corresponding
two new operator@?i , f)i) in Schrodinger picture
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from the two projections relations, respectively
[61] as

%; (t) = eXpm:' nc—ph(t _tO) * )Izi * exp(—i|:| nc—ph(t _tO))
ﬁi (t) = equHA nc—ph(t _tO) * ﬁi * eXp(—iHA nc—ph(t _tO))
(5)

the new quantum

Here, HAm,Lph denote to
Hamiltonian operator in the symmetries MQ;

3D-RS. 8% has very small parameters (compared
to the energy) that are elements of antisymmetric
real matrix and(C) denotes the new star product,

which is generalized between two arbitrary
f() - f(§ and g(x) - (%) to
Af(S()@()A()E(f Og)(x) instead of the usual product
(fg)(x) in ordinary three dimensional spaces [43-
57]

functions

(9(8) = (1 o)) = exp; 0205 (fg)x. p)

+o@ﬂ

N2

i
= (fg-56"0} 10}

xH =X

(6)

Where f(%) and §(X) are the new functions in

(NC: 3D-RS, 05 f(x) denotesaaf—(ﬂx) and the
X

following term (—'—249/”aj, f(x)02X g(x)) is induced

by (space-space) noncommutativity properties and
0|62 ) stands for the second and higher order terms

of 8. The Bopp’s shift method can be used, instead
of solving any quantum systems by using directly
star product procedure [43-65]

|%.%;]=i6; and |p;,p;]=0 @)

The three-generalized coordinates
(x=%,,9=%,,2=%;) in the noncommutative
space are depended on corresponding three-usual
generalized positions(x y,z) and momentum
coordinates (px, Py, pz) by the following

relations, as follows [61]
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- a 23
X=X——=% - , =Vv- -
zpyzpzyyszzpz
(2 é
5 31 32
Z2=7——= —_e
> Px > Py
(8
The non-vanishing commutators KNE-3D:
RS can be determined as follows
X 0. l= A, D.1=1Z b :i,
[% B=9. B, |=[2p.] o

[% 9]=1615,[% 2] =16,3,[$ 2] =i 6,5

which allow us to getting the operatcr?l2 on
noncommutative three dimensional spaces as
follows [47,61,63,65]:

f2=r?-L6 (10)

Where the couplind ©=L,0,, +L,0,3+L,0,;

and (@ii :%J , in particular, the pseudo-
harmonic potentials have the general featureseof th
true interaction energy, inter atomic and dynamical
properties in solid-state physics and play an
important role in the history of molecular struesir
and interactionsthis potential is considered as an
intermediate between harmonic oscillator and
Morse-type potentialswhich are more realistic
anharmonic potentials. Furthermore, the pseudo-
harmonic potential is extensively used to describe
the bound state of the interaction systems, and has
been applied for both classical and modern physics
[40]. This work is aimed at obtaining an analytic
expression for the eigenenergies of a modified
pseudoharmonic potential (M.P.H.), the potential in
(NC: 3D-R9 symmetries using the generalization
of Bopp’s shift method to discover the new
symmetries and a possibility to obtain another
application to this potential in different fieldBhis
work is based essentially on our previous works
[43-65] and it was considered in our work [65] in
the case of nonrelativistic case. The organization
scheme is given as follows. In the next section, we
briefly review the Dirac equation with
pseudoharmonic potential on based to Ref. [41].
Sec. 3 is devoted to studying the three deformed
Dirac equation by applying Bopp's shift method. In
the fourth section by applying standard
perturbation theory we find the quantum spectrum

of the n" excited states in NC-3D: RS for
relativistic spin-orbital interaction. In the next
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section, we derive the magnetic spectrum for the
studied potential. In the Sec. 6, we resume the
global spectrum and corresponding
noncommutative  Hamiltonian for (M.P.H.)
potential. Finally, the important results and the
conclusions are discussed in last section.

2. Review of the Dirac Equation for Pseudo-
harmonic Potential

In this section, we shall review the eigenfunctions
and eigenvalues for spherically symmetric for the
pseudoharmonic potentiaV/ (r) for the spin

symmetric case and the pseudo-spin spin-symmetry
[41]:

2
V(r):DO[L—r—"] Ear2+£2+c (11)
o r r

Where, Dy and r, are constant related to the

dissociation energy of a molecule and an
equilibrium distance, respectively, while

a=Dyfy2, b =Dgrg? and c=-2D,. The Dirac
equation in the presence of above interaction is
given by [41]

(ap+ BM +S(M))W(r.6.8)=(E-V(r)w(r.6.¢)
(12)

hereM , E and (g, :[0
Oi

lpo O -
,3:( %2 j) are the fermions’ mass, the
2x2

relativistic energy and the usual Dirac matrices ar

01 0 -i 10
al:(l OJ , azz(i Oj and 03:[0 _J
and are 2x2 three Pauli matrices, thus the
ordinary Hamiltonian operatoHAOph can ban be

expressed as

Hopn = (@p+ B(M +5(r))) +V (r) (13)

The spinor¥(r,6,¢) can be written as [41]

W (r.6.0)= [ Fo ?D _1 [ Fi (r)lem (6.¢) )} (14)

o)) T Gz (Vin(6.

Where, F,(r) and G ;(r) are the upper and
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lower components of the Dirac spinohq'm (0, ¢)
and Yj;(9,¢) are the spin and pseudo-spin

spherical harmonics whilk (IZ) is related to the
total angular momentum quantum numbers for spin
symmetryl and p-spin symmetry as [38,39,41]

_(I + i‘ if '( it 1/2),(5,2, p3/2|9tc)'
j=I +1,a|igneospin(k<o)
2 (15)
+if j =l +E|(p1/2|d3/2|etc)v

j=I —% , unaligneapin(k)0)
and

-1 if ‘(j'*l/i(s./zv p3/2,et(),
i :T—% ,alignesbir{k(0)

~1
1

~ )\ .. =1 (16)
+(| +]) it j=I +§!(p1/21d3/21et()1

j :I~+%,unaligneqbir(k>0)

The radial functions IEnk(r),Gnk(r)) are obtained
by solving the following differential equations [41

_dz Kk+) dﬁ(l)(i*ﬂ
B LR P U
_ (17)
"2—'“k‘”—[m+%-&)}[m-awz&)}+m =0
d r? M +Ey ~[r) [

_ (18)

The bound state solutions of the pseudo-harmonic
potential for the spin symmetric case obtained in

the exact spin symmetryq%:o and then the

energy eigenvalues depend orand| . According
to the Laplace transform approach (LTA) and
asymptotic interaction method, which was applied
in Refs. [41], the upper componeft,(r) of the

Dirac spinors are
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u?

o s3]

Where, N and 1':1(‘ nz2y +1,2£r) are the
normalization constant and the confluent hyper-
geometric functions, the relativistic positive ener
eigenvalues with the pseudo-harmonic potential
under the spin-symmetry condition are obtained as
[41]

T& (o0 +E-MNM+E—C—|(&+1P+ D3 AM+E-Q =4n+1/2)

(20)

n=0L2.. In the exact pseudo-spin symmetric
case, the IowelGnk(r) component of the Dirac

spinors [40]
/[2
" 3
2 1Fl(— v+, rzj

Gulr)=Nr""%e (21)

With v +1)=k(k+1)+(M +E-C)Doro’
and p° :D—Z(M +E-C) while N denote to the

o
normalization constant and the relativistic negativ
energy eigenvalues with the pseudoharmonic
potential under the pseudo-spin spin-symmetry
condition is obtained as [41]

M e £ a2

(22)

The generalized Laguerre polynomia_lg’)(x) can

be expressed as a function of the confluent hyper-
geometric functions as

LLP)(x) :F(n+ p+1)

n!I'i p +1i 23)

(Fa(=np+1x)

Which allow us to rewrite the upper component
F(r) and the lowerG,,(r) component of the

Dirac spinors for the spin symmetric case and the
pseudo-spin spin-symmetry, respectively, as
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(24)
and

F( +7j u?
=i 2w ) e

3. Noncommutative relativistic Hamiltonian

operator for (M.P.H.) potential
3.1. Formalism of Bopp’s shift method

Now, we shall review some fundamental principles
of the quantum noncommutative Dirac equation,
which resumed in the following steps for modified
pseudo-harmonic potentix{l(F) [47,61,63,65] as

- Ordinary Hamiltonian H(p,x) replaced by
noncommutative Hamiltoniam (p;, %, ),

- Ordinary spinorlP(F) replaced by new spinor
),

- Ordinary energyE replaced by new energy
E e phs @nd ordinary product replaced by new star

product”.

These previous steps allow us to write the new

noncommutative Dirac equation for modified
pseudo-harmonic potential as follows
H(p %) D@(r): Emph@(r“) (26)

It is worth emphasizing that th8opp’'s shift
method permutes to reduce the above equation to
simplest their form

H nc—ph(ﬁi ’ )’ii )‘ﬂ(r) = Enc— phw(r) (27)

Where, ¢(F) is a solution of the Dirac equation

and the new operator of Hamiltonian
an_ph(fJi ,%) can be expressed in three general

varieties: both noncommutative space and
noncommutative phase (NC-3D: RSP), only
noncommutative space (NC-3D: RS) and only
noncommutative phase (NC: 3D-RP), respectively,

[65] as
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“ A o 1- . 1
wwh(p,x)s%(wn*zéﬁ %= ——zegp,j for NG3DRS
.. (28)

PN " - 1
Hno—ph(p'xi)EH(pl = n,XI :xi _Egu pj) for NC-3D:RS
(29)

Hocpnl B:%) = H(ﬁ =n —%éj;% X :xjfor NC-3DRP

(30)
In a recent work, we were interested in the above
second variety and then the new modified

Hamiltonian Hn&ph(h %) defined as a function

- 1 A
of X =X _53“ pJ aﬂdpl =P

Hnopn(P, %) =aP+ B(M +S(F) +V (F) (31)

Where the modified
potentiaV (f) is given by

pseudo-harmonic

v®:ﬁ~?+c (32)

2

The Dirac equation in the presence of above
interaction V(f) can be rewritten according

Boopp’s shift method as follows
(@P+pM +s@E)W(r.0.4)= (E-V()w(.0.4) (33)

The radial functions Enk(r),Gnk(r)) are obtained,

in the absence of tensor interaction, by solving tw
equations

{% +$}Fnk (r)= [M +Eneph —A(f)]Gnk(r) (34)

{% * %Jenk(r) = [M “Encpn * z(f)]G“k(r) (35)

with A(F)=V(f)-S(F) and =(7)=v()+s()
eliminating Fnk(r) and Gnk(r) from Eqgns. (34)
and (35), we can obtain the following two

Schrodinger-like differential equations as follows
with (NC-3D: RS symmetries as
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(62 Kk+]) = (M + E g = MF)M = Epe i+ 206)) ) =0

P r?

& _Kk-D) R R
_? - r2 _(M +Eﬂ&Ph_A(r))(M _Eneph+z(r)) th(l’) =0

@7

After straightforward calculations, one can obtain
the two terms ifNC-3D: RS)spaces as follows

e,
—?:?-Ejﬁé+o@ﬂ

Which allows us to write the modified pseudo-
harmonic potential/ (F) as follows

leer{—ph(r 'O’ a’b)
R for thespirsymmetgase
V({H)=2-Licel pirsy
r r \/Zpert—ph(r ’e’ a b)
for the-spirsymmetcase
(39)
With
- a b .
Vipert-ph (r 0,8, b) = (_4 - FJL ©
' L _ (40)
A a - —
Vzpen_ph(r ,O, a b) = [r—4 - ?jLO

It is clearly that the star product inducing thenno
commutativity is replaced by the usual product plus

non local correctionsvlpert_ph(r,G),a,b) and

Vapert_pn(r»@,a,b) in the scalar potentia (f) .

This allows writing the modified Dirac equation in
the non-commutative case as an equation similarly
to the usual Dirac equation of the commutative
type with a non local potential. Furthermore, using
the unit step function (also known as the Heaviside
step function or simply the theta function) we can
rewrite the modified pseudoharmonic potential to
the following form
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W12, il 0t
(41)
+6(-Enep$/2peﬂpir,@ab)
Where
f
9(x):{:(; f‘:r 12% (42)

We generalized the constraint for the pseudospin
(p-spin) symmetry ( A(r):v(r) and
Z(r):CpS:constantswhich presented in Refs.
[38,39,40] into the new formA(f)=V(f) and
2(F)=Cps (NC-3D: R$ and
inserting the potentiaw(f) in Egn. (41) into the
two Schrodinger-like differential Egns. (36) and
(37), one obtains

=constants in

_cj k(k::D _(M +Enep (M _Eneph+ép5)
drza bl’ Fnlir) =0
_'(F _F +CJ(M - Eneph+CPS) (r“ ZstdM Eneph+cps)

(43)
_iz k(k ] (M + Ene-ph)(M Enc_ph+C )
dr2a br ) R ) {r)=0
__(? - +c] (M - Enc,»ph"cps)_[p —?]Eé(l\/l - Enk+Cps)

(44)

and two similarly equations obtained hy— L

Its clearly that, the additive new parts
Viperpn(r.@,8b) and Voo 0n(r.©,a,b) are
proportional with infinitesimal parametér, thus,

we can considered as a perturbations terms. Our
aim is to derive the energy spectrum for a moving
charged particle in the presence of a potentiagmiv
by (41) analytically in a very simple way.

4.  The exact relativistic spin-orbital
Hamiltonian and corresponding spectrum for
(M.P.H.) Potential in (NC: 3D- RS) symmetries

for excited n™ states for one-electron atoms

4.1. The exact relativistic spin-orbital
Hamiltonian for (M.P.H.) potential in (NC: 3D-
RS) symmetries for one-electron atoms

The result in Eqn. (40) can be rewritten in a more
accessible physical form, we replace bat® and

LO by SL and SL and then the two perturbative
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terms leen_ph(r ,O,a,b) and Vzpert_ph(r .0, a,b)

for the spin symmetric case and the pseudo-spin
spin-symmetry, respectively, can be rewritten to
the equivalent new form for (M.P.H.) potential

- a b
leert—ph(r ,O,a,b):O(r—4 o 3 jSL
b (45)
~ a ==
Vo an_nnll,©, 3,0 :G)(— JSL
2pert ph( ) r4 2I’
Furthermore, the above perturbative terms

leen_ph(r ,0,a,b) and Vzpen_ph(r ,0,3,b) can be

rewritten in the following new equivalent form for
(M.P.H.) potential

1@ _ b Y52 72 =2
leen—ph(r O, a,b) E F—FJ(J -L -S ]
1 a b <2 :2 =2
V _onlr,0,8b)==60| ——-——|J -L“-S
lpert ph( a ) 2 r4 2[’3]( J
(46)

To the best of our knowledge, we just replaced
the coupling spin-orbital (p-spin-orbita&[ and
d by the two expressions%[jz_tz_gzj and

2

1[J2_L2 gzj , respectively, in relativistic
2

guantum mechanics. The set ,g(,ph(f), ,>“<i),J2,

L2, S?and J,) forms a complete of conserved
physics quantities and the spin-orbit quantum
numberk(lZ) is related to the quantum numbers
for spin symmetryl and p-spin symmetrf as
follows [36,37]

EE—F if - (+1/i(€1,2,p3,2,et()

j= =l - %alignesbir(k(o)

@E+{T+J) if (j =I~+%j,(pl,2,d3,2,etc), (47)

i :|~+—;,unalignﬂ¢if(k>0)

~1
I

and
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K E_(I +]) if - (J + 1/)2»(3./2 ps,/z’eu);
j =l +-1,a|ignesmi/gk<o)

k=4 if [1 =|+= ](Iq/zdslz,et()\« (48)

i :|—_;,unalign3|0ﬂ(1k>0)

with k(K -1)=1""+1) and kk-1)=1(+1) ,
which allows us to form two diagondBx3)
matrixes I—A|S(,ph(k1,k2) and Himh(izl,k;), for

(M.P.H.) potential, respectively, ilNC: 3D-RS
symmetries as

= ~\_~(a b
(Fom) = ef -3

it {7+ 12 (sy0 Pasieto),j =1 -

e 22

,alignedspin (k(O)

2r®
~ 1 ~ 1
if [] =1 +EJ'(pU2 dyp.etc),j =1 + +oou unalignedspin (k)0)
(H:so-phj =0
33
(49)
and

- b
(H so-ph )11(k1) = kl@(% T3 j
r 2r
if ( i+ 1/2) (51/2 P3/2s etc)

( so-ph )22 (ko) =k [r% ZLJ

+ =, alignedspin (k(O)

if [] =1+ ;j P12, d3/0, etc =l- %,unalignedspin(k)O)
(H so-ph )33
(50)
4.2. The exact relativistic spin-orbital

spectrum for (M.P.H.) potential symmetries for
" states for one-electron atoms inNC: 3D-
RSP) symmetry

In this subsection, we are going to study the
modifications to the energy levels

( Enc—pet:d (@, lzl) ’ Enc—peru (@ '22)) for (' (J +1/2)

(sl,z,pg,z,etc) j =1 +E’ aligned spink(0 and
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spin-down)

and ( j=1 +1 )

o~
(pyjp,dgyp.etd) , j =1 >

and spin up), respectively, in first order of

infinitesimal paramete® , for excited states”

for the spin symmetric case and the pseudo-spin
spin-symmetry obtained by applying the standard
perturbation theory, using Egns. (24), (25) ang (40
as

, an aligned spink)0

O il 020 v g @ 28 e
= dEﬂeph]J. F*”k(r)\z.peﬂ»pt(r O3 b)Fnk(r)dr_dEne-pl‘)IG,{k (f)\72 peﬁpf( rea bbr{(f)df
(51)

The first part represent the modifications to the
energy levels for the spin symmetric cases while
the second part represent the modifications to the

energy levels En. perq (G), El), Em_pem(@, kz)) for
the pseudo-spin spin-symmetry, then we have

explicitly
- - . b
Ene perd (Ov kl) = _H(Enc- ph)kl.[ an (r)[r% - ?jenz (r )dr

(52)

Enc- peru (@, IZZ)E ‘9(_ En&ph)lzz_[ Gr{* (r)[l’% - ?bgjeﬁz (I‘ )dr

(53)

Using Eqgns. (25), (52) and (23), an explicit
expression for the modified energy eigenvalues

( En&perd(ek) Enepem( )) of the Dirac
equation with the modified pseudo-harmonic
potential under the pseudo spin symmetry

conditions obtained as

2
F[v +§j
_\ 2
F[n+v +§j
2

.. (54)

E e pora (01 K1) = ~6(- E e J1©| N
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2
1

+00 5 2
Tl—ph(DO'rO'Vlln):aJ- X" ZG_M[LLWE)(X)} dX

Enc- per:u (@, kZ)E _9(_ E e ph )‘:2@ Nn!

r[n +U+ —] _ 1 2
2 T2—ph(D0'r0'V1' J X" ”X[LL 2)()()} dX
+J?°I.2|/+Ze—,ur2 Ly+lj(r2) 2 i_i dr
0 Loz rt ord (60a)
(55) and
Now defining the new variableX =r? and the 1
function we get Ly pn(Do.Fo. V1. 1) af X ZE_M{LL J( )} dX
2
3 W1
_ 1 o r[v +§J L, ph(Do,ro,Vl, JX"Z %e "X[LL j( )} dX
Encperd(e kl)E_*g( Enc—ph)kle anig
F[n+v+5j (60b)
to 1 N 2 b Now we apply the special integral [77]
j X 2g” ﬂx|:|_L )(X)} [xaz_ 3JdX
2X 2 T _ ety o _
(56) Jer e L (L (2=
1+a+p + A2
F[V+§J : r+a+prl+a+k)| d ( )’H s
Enc—Per:u (@’Ez)z—lg( Enc—Ph)Eze Nnl———— 72 Mk!r(l+a) df (l_h)1+aBl+a+B
2 r[n +v +gj h=0
(61)
Tx et L) (x) by
i x? 3 Where, A? = 2&3h —g+ At 1th
2 2 1 2 1 ’
X (1-h) 2 1-h
(57)

F{s+ %}o 2,0, a,)0 and R(@ + ) -

which allow us to obtaining

A direct simplification gives

2

I‘[vl + gj
)k1® Nnl————=—

3
~\_ 1 I'[v ——)F[—H/ +n)
Enc- perd (@, k1)= _79(_ Enc—ph _ -2 ! 2 !
2 3 Tl—ph(DOvrmVlvn)—Doro
Mn+v, +— 3
2 nnr Eﬂ/l
(Tl—ph(DOervvlln)+T2—ph(D0!rO1V11n)) (v 3/2 2 3/2 3. AZ
(58) dn 2 2 ' 2'g?
) dh" (1_ h)"”*B V=312

and
(Ll—ph(DOvVOszln)*'Lz—ph(DO:VOszln))

(59)
Where, the four terms Tl_ph(DO,rO,vl,n) ,
T2—ph(D0’r0’V1’n) , Ll—ph(D01rOvV2’n) and
Lz_ph(Do,ro,vz, n) are given by, respectively, as

137
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3
+2 I’(Vl)l’[E +v,+ nj

Dgr
Tz—ph(DOvVOvVlvn):‘ 020 3
r1n!|'[—+v1j
2
v v, -1 3 A?
F 1 + 1 ; +7;7
dn (2}1 > V175 gz
dhn (1_ h)vﬁ% Bvl
h=0
(63)
Here
vl(v1+1):k1(k1+1)+(M + E—C)Doroz,
+
AZ = 4h2 B:,u—1+1 h ’
(1—h) 1-h

Ll—ph(DOvVOszv n)le—ph(DOYrO'Vl - Vzvn) and

Lo-p{DoloVa:N) = To-p{Do o — V1), which gives

3)(3
Mv,——1NZ+v,+n
[2 2] (2 ’ ]

rin!r(§+v2j

2

— - 2

(Y2 3/2 1+V2 3/2;v2+§;A—

d" 2 2 2 B?
dh"

explicitly

Ll—ph(DOlr0!V21 n) = Doro_2

(1 _ h)vz +g Blv2—3/2
h=0

(64)

and

3
2 r(Vz)r[E TV, + nj

Dor
L2—ph(D01rOvV21n):_ 020 3
r1n!F[—+v2]
2
% v, -1 3.A°
FIl 2|1+ 2w, + 25—
d" [2)’1 2 7 2'g?

dhn (l— h)vf% BY2

h=0
(65)

Substituting Eqgns. (64) and (65) and (62) and (63)
into Eqns. (58) and (59), respectively, we obtain
the modifications to the energy levels

( Enc— perd (@, 'Zl) ' Enc— peru (@: '22) ) produced by

relativistic spin-orbital effect under the pseugns
symmetry conditions. Knowing the energy levels
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( Enc—pel:d (O, kl) ! Enc—per.u (O, k2) ) produced by

relativistic spin-orbital effect under the spin
symmetry conditions, it can be determined by
means of same procedures as before and avoid
repetition we just make the following steps

N = Nk = k,Ky — ky and 6~ Epepn) = ~6(Enc-pn)
(66)

Which implies that
( Enc—perd(e’kl) ’ Enc—per.u(elkz) ) can be
expressed, respectively, as

2

F[V(k2)+gj
I'(n + V(kz) + gj

(Tl— ph(Dov ro.v(ky).n) + T2—ph(D0’ ro.v(ky )V, ”))
(67)

F(V(k1)+gj
I'(n + V(kl) + gj

(Ll—ph(Doer'V(kl)’ n)+ L2—ph(DO'rOvV(k1)' n))

1
Enc— perd (O, kl) = E B(E nc-ph )kle Nni

2

1
Enc— peru (@, k2) = E H(Enc— ph)kze Nn!

(68)

The negative and positive signs of the coefficients
6(— Em_ph) and G(Enc_ph) are necessary to ensure

that the modifications to the energy levels under
the pseudo spin symmetry conditions and spin
symmetry conditions are negative and positive,
respectively.

4.3. The exact relativistic magnetic spectrum
for (M.P.H.) potential for excited n'" states for
one-electron atoms in NC: 3D- R S) symmetries

Having obtained the exact modifications to the
energy levels Enc— perd (@, kl) ' Enc— peru (@v kz) )
and (Enc— perd (91 kl) ’ Enc— peru (O, k2) ) under the

pseudo spin symmetry conditions and spin

symmetry conditions, respectively, for exited
states, produced by noncommutative spin-orbital
Hamiltonian operator, we now consider another
interested physically meaningful phenomena,
which is also produced from the perturbative terms
of pseudoharmonic potential related to the
influence of an external uniform magnetic fields it
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sufficient to apply the following two replacements
to describing these phenomena

r0—2 r.0+2 L r0—2 ro+2 =
DO F_? LG)—»)(DO F_? BL

r—2 r.+2 N
or XD, %— o BL

2r®
and © - B (69)
Here x is infinitesimal real proportional's

constants, and we choose the magnetic field
E = BiZ , which allow us to introduce the modified
new magnetic Hamiltoniarﬁmag_mt(r,a,b,)() in
(NC: 3D-RS), as:

2|'3
for pseudspinsymmetn

roi r0+2 -
- - BL
Ao rt 2l

for spirsymmetry
(70)

- 2\ ,=
)(Do[rfg—ro ]BL
r

I:| magph(DO' rO'X) =

Here (— §§) denote to the ordinary Hamiltonian of

Zeeman Effect. To obtain the exact
noncommutative magnetic modifications of energy
Emagph()(: nm, DO! rO) and

Emagph()(,n,m,DO,ro) for modified pseudo-

harmonic potential, under the pseudo spin
symmetry conditions and spin symmetry
conditions, respectively, which is produced

automatically by the effect ofl ,n(r, Do, o, ¥),

we make the following two simultaneously
replacements

ElaFn ki >m and © - xyB (71)
Then, the

Emagph()(l n ﬁ], DO! rO)

relativistic magnetic modification
and

E magph ()(, nm,Dg, ro) correspondingn™ excited

states, in (NC-3D: RS) symmetries can be
determined from the following relation
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1 _ F(Vl +gj
Emagah()(vnrﬁvDOer):_Ed_ Eneph)/\/ N'iis
F[n +yp + f]
2
(Ll—ph(Do:rszv n) + Lz—ph(Do:rOszv d)ﬁ
(72)

and

. r(v(kl) g]
I'[n + I/(kl) + gj

(Ll—ph(DO'rOI V(kl)' n) + L2—ph(D01r01V(k1)7 n))m

1
Emag)h()(v nm, DO! r0) =E dEne—ph)X

(73)

Where, m and mdenote to the angular momentum
quantum numbers| <M<+ and - sms<+ |
which allows us to fixing @ +1) and (2 +1)
values, respectively.

5. The exact modified global spectrum for
(M.P.H.) potential in (NC-3D: RS) symmetries
for one-electron atoms

Let us now resume tha™ excited states eigen-
energies E . Qi N B,
Enepu(el k21)(xnrﬁr01 DO)) and

( Enca(@kXinMioDy) . Encru(@ko,¥.nMito, Do) )

of modified Dirac equation corresponding to
pseudo spin symmetry conditions and spin
symmetry conditions, respectively, in the firsterd

of parameter®, for (M.P.H.) potential in (NC:
3D-RS) symmetries based to obtained new results
Egns. (58), (59), (67), (68), (72) and (73), in
addition to the original results Egns. (20) and)(22
of energies in commutative space, we obtain the
following original results

2
5 F(Vl+gj
kO] Nnl——————
3
I'(n+v1+7j
2
3
v +=
( ’ 2j

3
I'(n*—l/1 +Ej

En&pd (@,’k;,X,n,rﬁ,l’m DO): En@ _%9(_ En&ph)

1 ~
(Tl—ph(DOvTOlev n)+T2—ph(D0:r0xV1:n))_Eg(_ Enc,kph))(B Nn!

(Li—ph(DOerrVZv n)+ Ly ph(D 0:To:V2, n))ﬁ‘

(74)
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_i{we)
! 3
F(n+v1+7j

2

3

) r(v1+§j
F(n+vl+§j
2

(75)

2

Enzz %d_ En&phFZ

Ene (@ 1T Dy)=

(Ll—ph(DOvro’Vz )""-2 ph Do To:V2: 1, ) ‘9( Eneph)

(Ll—ph(DOrrOerr n) + Lz—ph(D0~ oV, “))’71

3] |
.r(nw(kz) +§J
dEnep!‘)/Y F(IM ]

]

(76)
) |
r(n+v(kl) +gj

)+

(n+ i) +gj

Ereol Ok M D)= B+ fEre k@ N

(Tl pl‘(DJ bl N +T pl‘(DO o), Vn

(L 20 ) + Lo o 2 54 K)

Encr—u(o'kz XM, DO) = Enkz +%6(Ene-ph)k2 N

(Llfph(DD' TO,I/(K.) )+L2 ph(DD r0 V(K. ) dEneph)X NA———Z<

(Lo Do o) + Lo i B 54 K)
(77)

Now, it is important to construct Hamiltonian
operatorH ., for (M.P.H.) potential based on
previously obtained results. Naturally, to consider

the first term in the modified Hamiltonian operator
represents the kinetic energy and the potential

energy in ordinary commutative spaéboph of
the fermionic particle that was presented by Eqgn.
(14), the second term H S,crph(kl,kz) or

H‘S(,ph(El,Ez) represents the induced spin-orbital

parts for the pseudo spin symmetry conditions and
spin symmetry, and the last term is the modified

new magnetic Hamiltoniarh:lmag_mt(r, a,b, )()

140

ré 2r

pseudsspinsymmetry

2\ _ o
3]BL

ﬁs&ph(k‘l, E2)+)(D0[r0_2 _To

A - for
H nc-ph — HOph +

. r0—2 r0+2
Hso—ph(klrk2)+)(D0 7_ BL

2r3

for spinsymmetry

(78)

In this way, one can obtain the complete energy
spectra for (M.P.H.) potential inNC: 3D-R$
symmetries. Know the following accompanying
constraint relations:

* The original spectrum contains two possible
values of energies in ordinary three
dimensional space which represented by Egns.
(13) and (47).

As mentioned in the previous subsection, the

guantum numbersm and m satisfied the two

intervals: -l sms<+l and -l <ms<+ | thus we

have (2T+1) and (2I +1) values, respectively.

 We have also two values forj @i‘+% and

J =
pseudo spin symmetry conditions and spin
symmetry.
Allow us to deduce the important original results:
every state in usually three dimensional space will

be replaced by2(2|~+1) and 22| +1) sub-states
then the degenerated state can take

~ 1 . 1 . 1
| ==) and (j =I+= andj =1-=) for
2) (i > ] 2)

and
n-1

2> (21+1)=2n?
i=0

symmetries. Finally, we resume our original results

in this article, the first one is the induced
pseudospin-orbital and spin-orbital Hamiltonian

operators (—|~ so-ph (El, Izz) and H S&ph(kl, kz))

and corresponding eigenvalues
(Enc-pera (0 Exe-pen(@15)) and

( Enc— perd (Ov kl) ! Enc— peru (O, kz)): respectively as

values in (NC: 3D-RS)



The African Review of Physics (20172: 0018

) ) - . . . .
(prh) (kl{i nk(r)YJ,m(M)J dimensionality of the problem and new atomic
11 r guantum numbers
- Enc—per:d(e'lzl{i Gnk;(r)erm(M)] (j =1 +1/2j =I il/2§:tll2l,l) and the angular
X . R () - momentum quantum number in addition to the
'_Tso—ph(klrkz)‘unk(rvgl¢)3 (ﬁswph)zz(z i— Yj'm(9,¢)] infinitesimal paramete® in the symmetries of
Y 6() - (NC: 3D-RSP. We also showed that the obtained
=En&per;u(9,k1 i ”t Y,'m(9,¢)] energy spectra is degenerate and every old state
(ﬁ ) (R—{iG”‘:(r)Yr o ¢)J'° will be replaced by2(2| +1) and 2(2| +1) sub-
VA G states under the pseudo spin symmetry conditions
(79) and spin symmetry conditions, respectively, for
exited n™ states. In the limit wher® — 0, we
and recover the ordinary results of commutative space.
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