
The African Review of Physics (2017) 12:0016                                                                                                                         

114 

 

Two-fluid Scenario for Bianchi Type-II, VIII & IX Dark Energy  
Cosmological Models in Brans-Dicke Theory 

 
 
 

V. U. M. Rao*,1, K. V. S. Sireesha2  
1Department of Applied Mathematics, Andhra University, Visakhapatnam, India 

2Department of Engineering Mathematics, GITAM University, Visakhapatnam, India 
 
 

Spatially homogeneous Bianchi type-II, VIII & IX cosmological models filled with barotropic fluid and dark energy are 
obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke in 1961. We consider the cases when dark 
energy is minimally coupled to barotropic fluid and when it is in direct interaction with it. In both cases, the equation of state 
(EoS) parameter 

deω  changing from 1deω > −  to 1deω < − , which is consistent with the recent observation. Some important 

features of these models are also discussed. 
 
 
 

1.     Introduction 

In the study of modern cosmology, we consider 
that the total energy density of the Universe is 
dominated by the densities of two components: the 
dark matter and the dark energy. The recent 
observational data strongly motivate to study 
general properties of cosmological models 
containing more than one fluid. These universes are 
modeled with perfect fluids and with mixtures of 
non-interacting fluids under the assumption that 
there is no energy transfer among the components. 
But, such scenarios are not confirmed by 
observational data. This motivates us to study 
cosmological models containing fluids which 
interact with each other. In recent years there has 
been immense interest in cosmological models with 
dark energy in general relativity because of the fact 
that our observable universes is undergoing a phase 
of accelerated expansion that has been confirmed 
by several cosmological observations such as type 
1a supernova by several authors [2-8]. Caldwell [9] 
and Huange [10] have discussed cosmic microwave 
background (CMB) anisotropy and Daniel et al. 
[11] have studied large scale structure and strongly 
indicate that dark energy dominates the present 
universe, causing cosmic acceleration. Based on 
these observations, cosmologists have accepted the 
idea of dark energy, which is a fluid with negative 
pressure making up around 70% of the energy 
content of the present universe and to be 
responsible for this acceleration due to repulsive 
gravitation. Cosmologists have proposed many  
______________ 
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candidates for dark energy to fit the current 
observations such as cosmological constant, 
tachyon, quintessence, phantom and so on. 
Evolution of the equation of state (EoS) of dark 

energy 
D

D
p

D ρω =  transfers from 1−>Dω in the near 

past (quintessence region) to 1−<Dω  at recent 

stage (phantom region). Akarsu and Kilinc [12,13], 
Yadav [14], Yadav and Yadav [15] Pradhan et al. 
[16,17], Pradhan and Amirhashchi [18] and Yadav 
et al. [19] have investigated different aspects of 
dark energy models in general relativity with 
variable EoS parameter. The concept of dark 
energy was proposed for understanding this 
currently accelerating expansion of the Universe, 
and then its existence was confirmed by several 
high precision observational experiments ([20-22]), 
especially the Wilkinson Microwave Anisotropy 
Probe (WMAP) satellite experiment. The WMAP 
shows that dark energy occupies about 73% of the 
energy of the Universe, and dark matter about 23%. 
The usual baryon matter, which can be described 
by our known particle theory, occupies only about 
4% of the total energy of the universe. 
Measurements as of 2008, with the greatest weight 
coming from the combination of supernovae with 
either cosmic microwave background or baryon 
acoustic oscillation data, show that dark energy 
makes up 72 ±  3% of the total energy density of 
the Universe, and  its equation of state averaged 
over the last 7 billion years is ω = 1.00 ± 0.1. This 
is consistent with the simplest picture, the 
cosmological constant, but also with a great many 
scenarios of time varying dark energy or extended 
gravity theories. In order to explain why the cosmic 
acceleration happens, many theories have been 
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proposed. Although theories of trying to modify 
Einstein equations constitute a big part of these 
attempts, the main stream explanation for this 
problem, however, is known as theories of dark 
energies. This motivates us to study cosmological 
models containing fluids which interact with each 
other. Tolman [23] and Davidson [24] have 
considered the interaction between dust-like matter 
and radiation. Gromov et al. [25] have studied 
cosmological models with decay of massive 
particles into radiation or with matter creation. 
Cataldo et al. [26] have considered the simplest 
non-trivial cosmological scenarios for an 
interacting mixture of two cosmic fluids described 
by power-law scale factors, i.e., the expansion as a 
power-law in time. An interacting two-fluid 
scenario for dark energy in an FRW universe has 
been studied by Amirhashchi et al. [27]. Whereas, 
an interacting and non-interacting two-fluid 
scenario for dark energy in an FRW universe with 
constant deceleration parameter have been 
described by Pradhan et al. [28]. Adhav et al. [29] 
have investigated interacting cosmic fluids in LRS 
BianchiType-I cosmological models. Saha et al. 
[30] have obtained two-fluid scenario for dark 
energy models in an FRWuniverse. Adhav et al. 
[31] have studied Kaluza-Klein interacting cosmic 
fluid cosmological model. Reddy and Santhi 
Kumar [32] have discussed two-fluid scenario for 
dark energy model in a scalar-tensor theory of 
gravitation. Amirhashchi et al. [33] have studied 
interacting two-fluid viscous dark energy models in 
a non-flat universe.  

Brans-Dicke [1] theory of gravitation is a 
natural extension of general relativity, which 

introduces an additional scalar field φ  besides the 

metric tensor ijg  and a dimensionless coupling 

constant ω . The Brans - Dicke field equations for 
combined scalar and tensor field are given by 
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Where, ijijij RgRG
2

1−=  is an Einstein tensor, R  

is the scalar curvature,ω  and n  are constants, ijT  

is the stress energy tensor of the matter and comma 
and semicolon denote partial and covariant 
differentiation respectively.  

Also, we have energy – conservation equation  
 

0; =ij
jT                                    (3) 

 
This equation is a consequence of the field 
equations (1) and (2).  

Several aspects of Brans-Dicke cosmology have 
been extensively investigated by many authors. The 
work of Singh and Rai [34] gives a detailed survey 
of Brans-Dicke cosmological models discussed by 
several authors. Rao et al. [35] have obtained exact 
Bianchi type-V perfect fluid Cosmological models 
in Brans-Dicke theory of gravitation. Rao et al. 
[36] have obtained axially symmetric string 
cosmological models in Brans-Dicke theory of 
gravitation. Rao and Vijaya Santhi [37] have 
discussed Bianchi type-II, VIII and IX magnetized 
cosmological models in Brans-Dicke theory of 
gravitation. Rao and Sireesha [38,39] have studied 
a higher-dimensional string cosmological model in 
a scalar-tensor theory of gravitation and Bianchi 
type-II, VIII and IX string cosmological models 
with bulk viscosity in Brans-Dicke theory of 
gravitation. Rao et al. [40] have obtained LRS 
Bianchi type-I dark energy cosmological model in 
Brans-Dicke theory of gravitation.  

Bianchi type space-times play a vital role in 
understanding and description of the early stages of 
evolution of the universe. In particular, the study of 
Bianchi types II, VIII & IX universes is important 
because familiar solutions like FRW universe with 
positive curvature, the de Sitter universe, the Taub-
Nut solutions etc. correspond to Bianchi type II, 
VIII & IX space-times. Rao et al. [41] have studied 
Bianchi types II, VIII & IX string cosmological 
models with bulk viscosity in a theory of 
gravitation. Rao et al. [42] have discussed Perfect 
fluid cosmological models in a modified theory of 
gravity.  

In this paper, we will discuss spatially 
homogeneous Bianchi type-II, VIII & IX 
cosmological models filled with barotropic fluid 
and dark energy in a scalar-tensor theory of 
gravitation proposed by Brans and Dicke [1]. 
 
 
 

2.     Metric and Energy Momentum Tensor 

We consider a spatially homogeneous Bianchi 
type-II, VIII & IX metrics of the form 
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Where, ( )ϕφθ ,,  are the Eulerian angles, R and S 

are functions of t only. 
It represents: 

Bianchi type-II if 1)( =θf  and θθ =)(h  

Bianchi type-VIII if θθ Coshf =)(  and θθ Sinhh =)(  

Bianchi type- IX if θθ Sinf =)(  and θθ Cosh =)(  

The energy momentum tensor for a bulk 
viscous fluid containing one dimensional string is 
 

ijtotjitottotij gpuupT −+= )(ρ              (5) 

 
Where, Dmtot ρρρ +=

 
and

Dmtot ppp += . Here 

mρ  and mp
 
are energy density and pressure of the 

barotropic fluid and
Dρ  and

Dp  are energy density 

and pressure of dark fluid, respectively,iu  is the 

four-velocity of the fluid and 1=juiuijg   

In a commoving coordinate system, we get 
 

tottot TpTTT ρ=−=== 4
4
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for      ji ≠                (6) 

 
Where, quantities totρ  and totp

 
are functions of t 

only. 

3.     Solutions of Field equations 

Now with the help of Eqns. (5) & (6), the field 
equations (1) for the metric in Eqn. (4) can be 
written as 
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Here, the over head dot denotes differentiation with 
respect to t. 

When 1&1,0 +−=δ  the field equations (7) to 
(11) correspond to the Bianchi types II, VIII & IX 
universes, respectively. 

By taking the transformation αeR = , βeS =  

and dTSRdt 2= , the above field equations (7) to 

(11) can be written as 
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Here, the over head dash denotes differentiation 
with respect to ‘T’ and βα ,  are functions of ‘T’ 

only. 
Since we are considering the Bianchi type-II, 

VIII & IX metrics, we have 
θθθθθθ cos)(&sinh)(,)( === hhh , respectively. 
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Therefore, from Eqn. (15) we will get the following 
possible cases with 0)( ≠θh
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From the above three possibilities, we will 

consider only the first possibility, since in other 
two cases we will get cosmological models in 
general relativity. 

3.1.     Cosmological models in Brans-Dicke 
theory 

We will get cosmological models in Brans-Dicke 

theory only in case of 0and0 ≠′=′−′ φβα . 

If  ,0=′−′ βα  then we get c+= βα . 

Without loss of generality by taking the 
constant of integration, 0=c , we get 
 

βα =                                  (17) 

 
Using Eqn. (17), the above field equations (12) to 
(16) can be written as 
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The field equations (18) to (21) are four 
independent equations with five unknowns. 

From Eqns. (18) - (21), we have 
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From Eqn. (22), we get 
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The Bianchi Identity 0; =ij
jG  leads to 0; =ij

jT  

yields  
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The EoS of the barotropic fluid and dark field 

are respectively given by 
 

m
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D
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In the following sections we deal with two 

cases: (i) non-interacting two-fluid model and (ii) 
interacting two-fluid model. 

3.2.     Non-interacting two-fluid model 

First, we consider that two fluids do not interact 
with each other. Therefore, the general form of 
conservation Eqn. (25) leads us to write the 
conservation equation for the dark and barotropic 
fluid separately as 
 

0)(3 =++ mmm pH ρρ&                 (27) 

 
and   
 

0)(3 =++ DDD pH ρρ&                  (28) 

 
Here there is, of course, a structural difference 
between Eqns. (27) and (28). Because Eqn. (27) is 
in the form of mω , which is constant, and hence it is 

integrable. But Eqn. (28) is a function of
Dω . 

Accordingly, Dρ  and Dp  are also function of Dω . 

Therefore, we cannot integrate Eqn. (28) as it is a 
function of Dω , which is an unknown time 

dependent parameter. 
Integration of Eqn. (27) leads to 

2
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3.3.     Bianchi type-II ( 0=δ ) cosmological 
model 
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From Eqns. (20), (23), (24) and (29) we get 
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From Eqns. (26) and (29) we get 
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From Eqns. (19), (23), (24) and (31) we get 
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From Eqns. (26), (30) and (32) we get 
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3.4.     Interacting two-fluid model 

Secondly, we consider the interaction between dark 
energy and barotropic fluids. For this purpose, we 
can write the continuity equations for dark fluid 
and barotropic fluids as  
 

QpH mmm =++ )(3 ρρ&
               (34)

 

and  
 

QpH DDD −=++ )(3 ρρ&                 (35) 
 
The quantity Q expresses the interaction between 
dark energy components. Since we are interested in 
an energy transfer from the dark energy to dark 
matter, we consider Q>0, which ensures that the 
second law of thermodynamics is fulfilled [43]. 
Here we emphasize that continuity Eqns. (34) and 
(35) imply that interaction term Q should be 
proportional to a quantity with units of inverse time 

i.e., 
t

Q
1∝ . Therefore, a first and natural candidate 

can be the Hubble factor H multiplied by the 
energy density. Following Amendola et al. [44] and 
Guo et al. [45], we consider  
 

mHQ σρ3=                         (36) 
 
Where, σ is a coupling constant.  

Using Eqn. (36) in Eqn. (34) and after 
integrating, we obtain 
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From Eqns. (20), (23), (24) and (37) we get     
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From Eqns. (26) and (37) we get 
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From Eqns. (19), (23), (24) and (39) we get 
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From Eqns. (26), (38) and (40) we get 
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The metric in Eqn. (4), in this case, can be written 
as 
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Thus Eqn. (42) together with Eqns. (30) to (33) and 
(38) to (41) constitutes a Bianchi type-II two fluid 
cosmological model in Brans-Dicke [1] scalar 
tensor theory of gravitation. 

3.5.     Bianchi type-VIII ( 1−=δ ) cosmological 
model 

From Eqns. (20), (23), (24) and (29) we get 
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From Eqns. (26) and (29) we get 
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From Eqns. (19), (23), (24) and (44) we get 
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From Eqns. (26), (30) and (32) we get 
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3.6.     Interacting two-fluid model 

We consider now the interaction between dark 
energy and barotropic fluids. For this purpose, we 
can write the continuity equations for dark fluid 
and barotropic fluids as  
 

QpH mmm =++ )(3 ρρ&
                (47)

 

and  
 

QpH DDD −=++ )(3 ρρ&               (48) 
 
The quantity Q expresses the interaction between 
the dark energy components. Since we are 
interested in an energy transfer from the dark 

energy to dark matter, we consider Q>0, which 
ensures that the second law of thermodynamics is 
fulfilled [43]. Here we emphasize that the 
continuity Eqns. (47) and (48) imply that 
interaction term Q should be proportional to a 

quantity with units of inverse of time i.e., 
t

Q
1∝ . 

Therefore, a first and natural candidate can be the 
Hubble factor H multiplied with the energy density. 
Following Amendola et al. [44] and Guo et al. [45], 
we consider  
 

mHQ σρ3=                              (49) 
 
Where,σ  is a coupling constant.  
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Using Eqn. (49) in Eqn. (48) and after 
integrating, we obtain 
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From Eqns. (20), (23), (24) and (50) we get     
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From Eqns. (26) and (50) we get 
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From Eqns. (19), (23), (24) and (52) we get 
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From Eqns. (26), (51) and (53) we get 
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The metric in eqn. (4), in this case, can be written 
as 
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(55) 
 
Thus, Eqn. (55) together with Eqns. (43) to (46) 
and Eqns. (50) to (54) constitutes a Bianchi type-
VIII two fluid cosmological model in Brans-Dicke 
[1] scalar tensor theory of gravitation. 

3.7.     Bianchi type-IX ( 1−=δ ) cosmological 
model 

From Eqns. (20), (23), (24) and (29) we get 
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(56) 

 
From Eqns. (26) and (29) we get 
 

2
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From Eqns. (19), (23), (24) and (57) we get 
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(58) 

 
From Eqns. (26), (56) and (58) we get 
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3.8.     Interacting two-fluid model 

Secondly, we consider the interaction between dark 
energy and barotropic fluids. For this purpose, we 
can write the continuity equations for dark fluid 
and barotropic fluids as  
 

QpH mmm =++ )(3 ρρ&
                 (60)

 

and  
 

QpH DDD −=++ )(3 ρρ&                (61) 
 
The quantity Q expresses the interaction between 
the dark energy components. Since we are 
interested in an energy transfer from the dark 
energy to dark matter, we consider Q>0 which 
ensures that the second law of thermodynamics is 
fulfilled [43]. Here we emphasize that the 
continuity Eqns. (60) and (61) imply that the 
interaction term (Q) should be proportional to a 

quantity with units of inverse of time i.e., 
t

Q
1∝ . 

Therefore, a first and natural candidate can be the 
Hubble factor H multiplied with the energy density. 
Following Amendola et al. [44] and Guo et al. [45], 
we consider  
 

mHQ σρ3=                         (62) 
 
Where, σ  is a coupling constant.  

Using Eqn. (62) in Eqn. (60) and after 
integrating, we obtain 
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From Eqns. (20), (23), (24) and (63) we get     
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From Eqns. (26) & (63) we get 
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From Eqns. (19), (23), (24) and (65) we get 
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From Eqns. (26), (64) and (66) we get 
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The metric (4), in this case can be written as 
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Thus Eqn. (67) together with (56) to (59) and (63) 
to (67) constitutes a Bianchi type-IX two fluid 
cosmological model in Brans-Dicke [1] scalar 
tensor theory of gravitation. 
 

4.     Some Other Important Properties of the 
Models 

The spatial volume for the models is  
 

( )θfbaTgV 2
3

2
1

)()(
−

+=−=                  (69) 

 
The average scale factor for the model is  
 

3
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)]([2
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)( )(3
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θfVta baT
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== +             (70) 

 
 
The expression for expansion scalar θ  calculated 
for the flow vector iu  is given  by 
 

)(2
3

, baT
a

i
iu +

−==θ                     (71) 

 
and the shear scalar σ  is given by 
 

2)(

2

8
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2
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ij
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+
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The deceleration parameter q  is given by 
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3
1

)(3( 2
,

2 −=+−= − θθθ i
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The deceleration parameter appears with negative 
sign implies accelerating expansion of the universe, 
which is consistent with the present day 
observations.  

The Hubble’s parameter H is given by 
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a
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The mean anisotropy parameter Am is given by 
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where    
 

)3,2,1( =−=∆ iHHH ii            (75) 

 
Look-back time-red shift: The look-back time, 

)(0 zttt −=∆ is the difference between the age of the 

universe at present time (z=0) and the age of the 
universe when a particular light ray at red shift z, the 
expansion scalar of the universe )( zta  is related to 

0a  
by az

a01 =+ , where 0a  is the present scale 

factor. Therefore, from (70), we get 
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This equation can also be expressed as 
 

2)1(10 zTH +−=∆      (77) 

Where, 
0H  is the Hubble’s constant. 

Luminosity distance: 
Luminosity distance is defined as the distance 
which will preserve the validity of the inverse law 
for the fall of intensity and, is given by  

 

0)1(1 azrdL +=                          (78) 

 
Where 1r  is the radial coordinate distance of the 

object at light emission and, is given by 
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From Eqns. (78) and (79), we get 
 
The luminosity distance  
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From Eqns. (79) and (80), we get 
 
The distance modulus  
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The tensor of rotation ijujiuijw ,, −=  is identically 

zero and hence this universe is non-rotational. 

5.     Discussion and Conclusions 

In this paper we have presented spatially 
homogeneous Bianchi type - II, VIII & IX two 
fluid cosmological model in Brans-Dicke (1961) 
scalar tensor theory of gravitation. 

The following are the observations and 
conclusions. 

• The models are always isotropic and have 

singularity at 
a

b
T

−= .  

• The volume decreases with the increase of 
time i.e., as ∞→T , the spatial volume 
vanishes.  

• At 
a

b
T

−=
 

, the expansion scalar , shear 

scalar  and the Hubble parameter H 

decreases with the increase of time.  

• From (75), one can observe that 0=mA
 
and 

this indicates that these universes always 
expand isotropically.  

• The deceleration parameter appears with 
negative sign implies accelerating expansion 
of the universe, which is consistent with the 
present day observations.  

• We have obtained expressions for look-back 
time T∆ , distance modulus )(zD  and 

luminosity distance Ld  versus red shift and 

discussed their significance. 

• All the models presented here are isotropic, 
non-rotating, shearing and also accelerating. 
Hence they represent not only the early stage 
of evolution but also the present universe.   
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